前言:当用户上传大文件的时候,我们需要保证页面的流畅,还要监听上传进度,还有用户如果取消上传后,再度上传相同文件,是否需要从头上传。
1. html 结构
input 按钮,上传文件。会用到 md5 文件 hash 值,方便上传中断后继续上传,如果已经上传的部分,不会重新上传。
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta
name="viewport"
content="initial-scale=1.0, user-scalable=no, width=device-width"
/>
<title>document</title>
<style></style>
</head>
<body>
<input type="file" />
<script
src="https://lf9-cdn-tos.bytecdntp.com/cdn/expire-1-M/spark-md5/3.0.2/spark-md5.min.js"
type="application/javascript"
></script>
<script src="./main.js"></script>
</body>
</html>
2. main.js
监听 input 按钮,获取到文件,然后传给 cutFile 函数进行分片。返回分片结果。
import { cutFile } from "./cutFile.js";
const inputFile = document.querySelector('input[type="file"]');
inputFile.onchange = async (e) => {
const file = e.target.files[0];
const chunk = await cutFile(file);
console.log(chunk);
};
3. cutFile.js
切片函数编写,定义 CHUNK_SIZE 每片大小,开启多线程,拿到你电脑内核数。定义 cutFile 方法,传入 file 开始根据内核开始切片。
const CHUNK_SIZE = 1024 * 1024 * 5; // 5MB
const THREAD_COUNT = navigator.hardwareConcurrency || 4; // 拿到内核数
export function cutFile(file) {
return new Promise((resolve) => {
const chunkCount = Math.ceil(file.size / CHUNK_SIZE);
const threadChunkCount = Math.ceil(chunkCount / THREAD_COUNT);
const result = [];
let finishCount = 0;
for (let i = 0; i < THREAD_COUNT; i++) {
const worker = new Worker("./worker.js", {
type: "module",
});
let end = (i + 1) * threadChunkCount;
const start = i * threadChunkCount;
if (end > chunkCount) {
end = chunkCount;
}
worker.postMessage({
file,
CHUNK_SIZE,
startChunkIndex: start,
endChunkIndex: end,
});
worker.onmessage = (e) => {
for (let i = start; i < end; i++) {
result[i] = e.data[i - start];
}
worker.terminate();
finishCount++;
if (finishCount === THREAD_COUNT) {
resolve(result);
}
};
}
});
}
4. worker.js
定义线程切片方法
// worker.js
import { createChunk } from "./createChunk.js";
onmessage = async (e) => {
const {
file,
CHUNK_SIZE,
startChunkIndex: start,
endChunkIndex: end,
} = e.target;
const proms = [];
for (let i = start; i < end; i++) {
proms.push(createChunk(file, i, CHUNK_SIZE));
}
const chunks = await Promise.all(proms);
postMessage(chunks);
};
5. createChunk.js
给每个分片通过 md5 编码设置一个 hash,判断是否已经上传。
import SparkMD5 from "./sparkmd5.js";
export function createChunk(file, index, chunkSize) {
return new Promise((resolve) => {
const start = index * chunkSize;
const end = start + chunkSize;
const spark = new SparkMD5.ArrayBuffer();
const fileReader = new FileReader();
const blob = file.slice(start, end);
fileReader.onload = (e) => {
spark.append(e.target.result);
resolve({
start,
end,
index,
hash: spark.end(),
blob,
});
};
fileReader.readAsArrayBuffer(blob);
});
}