Bootstrap

曲线的弧长与曲率

目录

T1

求 下 列 曲 线 的 弧 长 与 曲 率 :

(1)   y = a x 2 ; {\:y}=ax^{2}; y=ax2;

解:
参数表达式 r ( t ) = ( t , a t 2 ) ( t ∈ R ) . \mathbf{r}(t)=(t,at^2)(t\in\mathbb{R}). r(t)=(t,at2)(tR). 直接计算,有
r ′ ( t ) = ( 1 , 2 a t ) , r ′ ′ ( t ) = ( 0 , 2 a ) , ∣ r ′ ( t ) ∣ = 1 + 4 a 2 t 2 . \mathbf{r}'(t)=(1,2at),\quad\mathbf{r}''(t)=(0,2a),\quad|\mathbf{r}'(t)|=\sqrt{1+4a^2t^2}. r(t)=(1,2at),r′′(t)=(0,2a),r(t)=1+4a2t2 .因此,弧长(作为 t t t 的函数)为(注意 a ≠ 0. ) a\neq0.) a=0.)
s = ∫ 0 t ∣ r ′ ( u ) ∣ d u = ∫ 0 t 1 + 4 a 2 u 2 d u = 1 2 t 1 + 4 a 2 t 2 + 1 4 ∣ a ∣ log ⁡ ∣ 2 ∣ a ∣ t + 1 + 4 a 2 t 2 ∣ . s=\int_0^t|\mathbf{r}^{\prime}(u)|du=\int_0^t\sqrt{1+4a^2u^2}du=\frac12t\sqrt{1+4a^2t^2}+\frac1{4|a|}\log|2|a|t+\sqrt{1+4a^2t^2}|. s=0tr(u)du=0t1+4a2u2 du=21t1+4a2t2 +4∣a1log∣2∣at+1+4a2t2 ∣.

积分运算过程:
tan ⁡ θ = 2 ∣ a ∣ u \tan\theta=2|a|u tanθ=2∣au.则 1 + 4 a 2 u 2 = sec ⁡ θ \sqrt1+4a^2u^2=\sec\theta 1 +4a2u2=secθ.从而 , ∫ 1 + 4 a 2 u 2 d u = 1 2 ∣ a ∣ ∫ sec ⁡ 3 θ d θ . ,\int\sqrt{1+4a^2u^2}du=\frac1{2|a|}\int\sec^3\theta d\theta. ,1+4a2u2 du=2∣a1sec3θdθ.
I : = ∫ sec ⁡ 3 θ d θ = ∫ ( sec ⁡ θ tan ⁡ 2 θ + sec ⁡ θ ) d θ = ∫ tan ⁡ θ d ( sec ⁡ θ ) + sec ⁡ θ d θ = tan ⁡ θ sec ⁡ θ − ∫ sec ⁡ 3 θ d θ + ∫ sec ⁡ θ d θ = tan ⁡ θ sec ⁡ θ − I + log ⁡ ∣ sec ⁡ θ + tan ⁡ θ ∣ = 1 2 ( tan ⁡ θ sec ⁡ θ + log ⁡ ∣ sec ⁡ θ + tan ⁡ θ ∣ ) + C = 1 2 ( 2 ∣ a ∣ u 1 + 4 a 2 u 2 + log ⁡ ∣ 2 ∣ a ∣ u + 1 + 4 a 2 u 2 ∣ ) + C . \begin{aligned} I:=\int\sec^3\theta d\theta &=\int(\sec\theta\tan^2\theta+\sec\theta)d\theta\\ &=\int\tan\theta d(\sec\theta)+\sec\theta d\theta \\ &=\tan\theta\sec\theta-\int\sec^3\theta d\theta+\int\sec\theta d\theta \\ &=\tan\theta\sec\theta-I+\log|\sec\theta+\tan\theta|\\ &=\frac12(\tan\theta\sec\theta+\log|\sec\theta+\tan\theta|)+C \\ &=\frac12(2|a|u\sqrt{1+4a^2u^2}+\log|2|a|u+\sqrt{1+4a^2u^2}|)+C.\\\end{aligned} I:=sec3θdθ=(secθtan2θ+secθ)dθ=tanθd(secθ)+secθdθ=tanθsecθsec3θdθ+secθdθ=tanθsecθI+logsecθ+tanθ=21(tanθsecθ+logsecθ+tanθ)+C=21(2∣au1+4a2u2 +log∣2∣au+1+4a2u2 )+C.

则有 ∫ 1 + 4 a 2 u 2 d u = 1 2 u 1 + 4 a 2 u 2 + 1 4 ∣ a ∣ log ⁡ ∣ 2 ∣ a ∣ u + 1 + 4 a 2 u 2 ∣ + C . \\\int\sqrt{1+4a^2u^2}du=\frac12u\sqrt{1+4a^2u^2}+\frac1{4|a|}\log|2|a|u+\sqrt{1+4a^2u^2}|+C. 1+4a2u2 du=21u1+4a2u2 +4∣a1log∣2∣au+1+4a2u2 +C.

从而得到曲率
κ ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = 2 a ( 1 + 4 a 2 t 2 ) 3 2 . \kappa(t)=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac32}}=\frac{2a}{(1+4a^2t^2)^{\frac32}}. κ(t)=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t)=(1+4a2t2)232a.



T2

求 下 列 曲 线 的 弧 长 与 曲 率 :

x 2 a 2 + y 2 b 2 = 1 ; \frac {x^2}{a^2}+ \frac {y^2}{b^2}= 1; a2x2+b2y2=1;
解:
不妨设 a > 0 a>0 a>0 b > 0. b>0. b>0.则椭圆曲线(去掉点 ( a , 0 ) ) (a,0)) (a,0))的参数表达式为

r ( t ) = ( a cos ⁡ t , b sin ⁡ t ) ( 0 < t < 2 π ) . \mathbf{r}(t)=(a\cos t,b\sin t)(0<t<2\pi). r(t)=(acost,bsint)(0<t<2π).

直接计算,有

r ′ ( t ) = ( − a sin ⁡ t , b cos ⁡ t ) , r ′ ′ ( t ) = ( − a cos ⁡ t , − b sin ⁡ t ) . \mathbf{r}'(t)=(-a\sin t,b\cos t),\quad\mathbf{r}''(t)=(-a\cos t,-b\sin t). r(t)=(asint,bcost),r′′(t)=(acost,bsint).

弧长为

s = ∫ 0 t a 2 sin ⁡ 2 u + b 2 cos ⁡ 2 u d u = { a t , a = b ; 第一类椭圆积分 , a ≠ b . s=\int_0^t\sqrt{a^2\sin^2u+b^2\cos^2u}du=\left\{\begin{array}{cc}at,&a=b;\\\text{第一类椭圆积分},&a\neq b.\end{array}\right. s=0ta2sin2u+b2cos2u du={at,第一类椭圆积分,a=b;a=b.

曲率

κ ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = a b ( a 2 sin ⁡ 2 t + b 2 cos ⁡ 2 t ) 3 2 . \kappa(t)=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac32}}=\frac{ab}{(a^2\sin^2t+b^2\cos^2t)^{\frac32}}. κ(t)=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t)=(a2sin2t+b2cos2t)23ab.



T3

求 下 列 曲 线 的 弧 长 与 曲 率 :
r ( t ) = ( a cosh ⁡ t , b sinh ⁡ t ) ( t ∈ R ) ; \mathbf{r} ( t) = ( a\cosh t, b\sinh t) ( t\in \mathbb{R} ) ; r(t)=(acosht,bsinht)(tR);

解:

直接计算

r ′ ( t ) = ( a sinh ⁡ t , b cosh ⁡ t ) , r ′ ′ ( t ) = ( a cosh ⁡ t , b sinh ⁡ t ) \mathbf{r}^{\prime}(t)=(a\sinh t,b\cosh t),\quad\mathbf{r}^{\prime\prime}(t)=(a\cosh t,b\sinh t) r(t)=(asinht,bcosht),r′′(t)=(acosht,bsinht)
弧长

s = ∫ 0 t a 2 sinh ⁡ 2 u + b 2 cosh ⁡ 2 u d u . s=\int_0^t\sqrt{a^2\sinh^2u+b^2\cosh^2u}du. s=0ta2sinh2u+b2cosh2u du.
曲率

κ ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = − a b ( a 2 sinh ⁡ 2 t + b 2 cosh ⁡ 2 t ) 3 2 . \kappa(t)=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac{3}{2}}}=-\frac{ab}{(a^2\sinh^2t+b^2\cosh^2t)^{\frac{3}{2}}}. κ(t)=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t)=(a2sinh2t+b2cosh2t)23ab.



T4

求 下 列 曲 线 的 弧 长 与 曲 率 :

r ( t ) = ( t , a cosh ⁡ t a ) \mathbf{r} ( t) = ( t, a\cosh \frac ta) r(t)=(t,acoshat) ( a > 0 ) ( t ∈ R ) . ( a> 0) ( t\in \mathbb{R} ) . (a>0)(tR).
解:
直接计算

r ′ ( t ) = ( 1 , sinh ⁡ t a ) , r ′ ′ ( t ) = ( 0 , 1 a cosh ⁡ t a ) . \mathbf{r}'(t)=(1,\sinh\frac ta),\quad\mathbf{r}''(t)=(0,\frac1a\cosh\frac ta). r(t)=(1,sinhat),r′′(t)=(0,a1coshat).
弧长

s = ∫ 0 t 1 + sinh ⁡ 2 u a d u = ∫ 0 t cosh ⁡ u a d u = a sinh ⁡ t a . s=\int_0^t\sqrt{1+\sinh^2\frac ua}du=\int_0^t\cosh\frac uadu=a\sinh\frac ta. s=0t1+sinh2au du=0tcoshaudu=asinhat.
曲率

κ ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = cosh ⁡ t a a ( 1 + sinh ⁡ 2 t a ) 3 2 . \kappa(t)=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac32}}=\frac{\cosh\frac ta}{a(1+\sinh^2\frac ta)^{\frac32}}. κ(t)=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t)=a(1+sinh2at)23coshat.



T5

设曲线 r ( t ) = ( x ( t ) , y ( t ) ) \mathbf{r}(t)=(x(t),y(t)) r(t)=(x(t),y(t)),证明它的曲率是
κ ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 . \kappa(t)=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac32}}. κ(t)=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t).

证明:首先,

r ′ ( t ) = ( x ′ ( t ) , y ′ ( t ) ) , r ′ ′ ( t ) = ( x ′ ′ ( t ) , y ′ ′ ( t ) ) . \mathbf{r}'(t)=(x'(t),y'(t)),\quad\mathbf{r}''(t)=(x''(t),y''(t)). r(t)=(x(t),y(t)),r′′(t)=(x′′(t),y′′(t)).

s s s是曲线 r ( t ) (t) (t)的弧长参数.则 s = s ( t ) s=s(t) s=s(t) t = t ( s ) t=t(s) t=t(s)互为反函数.

d s d t = ∣ r ′ ( t ) ∣ = x ′ ( t ) 2 + y ′ ( t ) 2 ,   d t d s = 1 ∣ r ′ ( t ) ∣ = 1 x ′ ( t ) 2 + y ′ ( t ) 2 , \dfrac{ds}{dt}=|\mathbf{r}'(t)|=\sqrt{x'(t)^2+y'(t)^2},\:\dfrac{dt}{ds}=\dfrac{1}{|\mathbf{r}'(t)|}=\dfrac{1}{\sqrt{x'(t)^2+y'(t)^2}}, dtds=r(t)=x(t)2+y(t)2 ,dsdt=r(t)1=x(t)2+y(t)2 1,

d 2 t d s 2 = d d t ( d t d s ) d t d s = − x ′ ( t ) x ′ ′ ( t ) + y ′ ( t ) y ′ ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 2 . \frac{d^2t}{ds^2}=\frac d{dt}(\frac{dt}{ds})\frac{dt}{ds}=-\frac{x'(t)x''(t)+y'(t)y''(t)}{(x'(t)^2+y'(t)^2)^2}. ds2d2t=dtd(dsdt)dsdt=(x(t)2+y(t)2)2x(t)x′′(t)+y(t)y′′(t).

由于平面曲线的 Frenet 标架和曲率与(同向的容许)参数选择无关,故

t ( t ) : = t ( s ( t ) ) = d r ( t ) d t d t d s = ( x ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 , y ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 ) . \mathbf{t}(t):=\mathbf{t}(s(t))=\frac{d\mathbf{r}(t)}{dt}\frac{dt}{ds}=(\frac{x'(t)}{\sqrt{x'(t)^2+y'(t)^2}},\frac{y'(t)}{\sqrt{x'(t)^2+y'(t)^2}}). t(t):=t(s(t))=dtdr(t)dsdt=(x(t)2+y(t)2 x(t),x(t)2+y(t)2 y(t)).

从而,

t ˙ ( s ( t ) ) = r ′ ′ ( t ) ( d t d s ) 2 + r ′ ( t ) d 2 t d s 2 = ( − y ′ ( t ) ( x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 2 , x ′ ( t ) ( x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 2 ) n ( t ) : = n ( s ( t ) ) = ( − y ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 , x ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 ) . \dot{\mathbf{t}}(s(t))=\mathbf{r}''(t)(\frac{dt}{ds})^2+\mathbf{r}'(t)\frac{d^2t}{ds^2}=(-\frac{y'(t)(x'(t)y''(t)-x''(t)y'(t))}{(x'(t)^2+y'(t)^2)^2},\frac{x'(t)(x'(t)y''(t)-x''(t)y'(t))}{(x'(t)^2+y'(t)^2)^2})\\\mathbf{n}(t):=\mathbf{n}(s(t))=(-\frac{y'(t)}{\sqrt{x'(t)^2+y'(t)^2}},\frac{x'(t)}{\sqrt{x'(t)^2+y'(t)^2}}). t˙(s(t))=r′′(t)(dsdt)2+r(t)ds2d2t=((x(t)2+y(t)2)2y(t)(x(t)y′′(t)x′′(t)y(t)),(x(t)2+y(t)2)2x(t)(x(t)y′′(t)x′′(t)y(t)))n(t):=n(s(t))=(x(t)2+y(t)2 y(t),x(t)2+y(t)2 x(t)).

所以,

κ ( t ) = κ ( s ( t ) ) = ⟨ t ˙ ( s ( t ) ) , n ( s ( t ) ) ⟩ = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 . \kappa(t)=\kappa(s(t))=\langle\dot{\mathbf{t}}(s(t)),\mathbf{n}(s(t))\rangle=\frac{x'(t)y''(t)-x''(t)y'(t)}{(x'(t)^2+y'(t)^2)^{\frac32}}. κ(t)=κ(s(t))=t˙(s(t)),n(s(t))⟩=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t).

t ( t ) = r ′ ( t ) ∣ r ′ ( t ) ∣ = ( x ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 , y ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 ) , \mathbf{t}(t)=\frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}=(\frac{x'(t)}{\sqrt{x'(t)^2+y'(t)^2}},\frac{y'(t)}{\sqrt{x'(t)^2+y'(t)^2}}), t(t)=r(t)r(t)=(x(t)2+y(t)2 x(t),x(t)2+y(t)2 y(t)),
n ( t ) = = r ′ ′ ( t ) ∣ r ′ ′ ( t ) ∣ = ( − y ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 , x ′ ( t ) x ′ ( t ) 2 + y ′ ( t ) 2 ) . \mathbf{n}(t)==\frac{\mathbf{r}''(t)}{|\mathbf{r}''(t)|}=(-\frac{y'(t)}{\sqrt{x'(t)^2+y'(t)^2}},\frac{x'(t)}{\sqrt{x'(t)^2+y'(t)^2}}). n(t)==r′′(t)r′′(t)=(x(t)2+y(t)2 y(t),x(t)2+y(t)2 x(t)).



T6

设曲线 C C C在极坐标 ( r , θ ) (r,\theta) (r,θ)下的表示为 r = f ( θ ) r=f(\theta) r=f(θ),证明 C C C的曲率是

κ ( θ ) = f 2 ( θ ) + 2 ( d f d θ ) 2 − f ( θ ) d 2 f d θ 2 ( f 2 ( θ ) + ( d f d θ ) 2 ) 3 2 \kappa(\theta)=\frac{f^2(\theta)+2(\frac{df}{d\theta})^2-f(\theta)\frac{d^2f}{d\theta^2}}{(f^2(\theta)+(\frac{df}{d\theta})^2)^{\frac32}} κ(θ)=(f2(θ)+(dθdf)2)23f2(θ)+2(dθdf)2f(θ)dθ2d2f

证明:
曲线 C C C有参数表示式 r ( θ ) = ( f ( θ ) cos ⁡ θ , f ( θ ) sin ⁡ θ ) . \mathbf{r}(\theta)=(f(\theta)\cos\theta,f(\theta)\sin\theta). r(θ)=(f(θ)cosθ,f(θ)sinθ).直接计算,有
r ′ ( θ ) = ( f ′ ( θ ) cos ⁡ θ − f ( θ ) sin ⁡ θ , f ′ ( θ ) sin ⁡ θ + f ( θ ) cos ⁡ θ \mathbf{r}'(\theta)=(f'(\theta)\cos\theta-f(\theta)\sin\theta,f'(\theta)\sin\theta+f(\theta)\cos\theta r(θ)=(f(θ)cosθf(θ)sinθ,f(θ)sinθ+f(θ)cosθ

r ′ ′ ( θ ) = ( f ′ ′ ( θ ) cos ⁡ θ − 2 f ′ ( θ ) sin ⁡ θ − f ( θ ) cos ⁡ θ , f ′ ′ ( θ ) sin ⁡ θ + 2 f ′ ( θ ) cos ⁡ θ − f ( θ ) sin ⁡ θ ) . \mathbf{r}^{\prime\prime}(\theta)=(f^{\prime\prime}(\theta)\cos\theta-2f^{\prime}(\theta)\sin\theta-f(\theta)\cos\theta,f^{\prime\prime}(\theta)\sin\theta+2f^{\prime}(\theta)\cos\theta-f(\theta)\sin\theta). r′′(θ)=(f′′(θ)cosθ2f(θ)sinθf(θ)cosθ,f′′(θ)sinθ+2f(θ)cosθf(θ)sinθ).

从而

κ ( θ ) = x ′ ( θ ) y ′ ′ ( θ ) − x ′ ′ ( θ ) y ′ ( θ ) ( x ′ ( θ ) 2 + y ′ ( θ ) 2 ) 3 2 = f 2 ( θ ) + 2 f ′ ( θ ) 2 − f ( θ ) f ′ ′ ( θ ) ( f 2 ( θ ) + ( f ′ ( θ ) ) 2 ) 3 2 . \kappa(\theta)=\frac{x'(\theta)y''(\theta)-x''(\theta)y'(\theta)}{(x'(\theta)^2+y'(\theta)^2)^{\frac32}}=\frac{f^2(\theta)+2f'(\theta)^2-f(\theta)f''(\theta)}{(f^2(\theta)+(f'(\theta))^2)^{\frac32}}. κ(θ)=(x(θ)2+y(θ)2)23x(θ)y′′(θ)x′′(θ)y(θ)=(f2(θ)+(f(θ))2)23f2(θ)+2f(θ)2f(θ)f′′(θ).

;