1.使用环境
IDE:Jupyter Lab,使用Python2 kernel实现
模型可视化:GraphViz,可以直接在jupyter中使用;Netron window版本
模型转化:在onnx/onnx-ecosystem容器中进行
2.代码
创建并训练模型
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
# 训练模型
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
with open("iris.dot", 'w') as f:
f = tree.export_graphviz(clf, out_file=f)
from IPython.display import Image
import pydotplus
dot_data = tree.export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
# 模型可视化
Image(graph.create_png())
将图片保存为pdf
#设置环境变量,解决调用graph时“InvocationException: GraphViz's executables not found”的错误。
import os
os.environ["PATH"] += os.pathsep + 'D:/Anaconda2/Library/bin/graphviz/'
dot_data = tree.export_graphviz(clf, out_file=None)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("iris.pdf")
使用joblib保存模型为pkl格式,并读取pkl格式的模型文件进行预测
from sklearn.externals import joblib
joblib.dump(clf, "DecisionTreeClassifier.pkl")
f1=joblib.load('DecisionTreeClassifier.pkl')
f1.score(iris.data, iris.target)
使用pickle保存模型为文本格式并读取通过pickle保存的模型文件进行预测¶
import pickle
s=pickle.dumps(clf)
f=open('DecisionTreeClassifier.txt','w')
f.write(s)
f.close()
f2=open('DecisionTreeClassifier.txt','r')
s2=f2.read()
clf2=pickle.loads(s2)
clf2.score(iris.data, iris.target)
模型格式转换
在onnx/onnx-ecosystem容器执行如下代码:
将pkl格式的模型文件转换为onnx:DecisionTreeClassifier.pkl ----> model.onnx
from sklearn.externals import joblib
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import *
import onnxmltools
# Update the input name and path for your sklearn model
input_skl_model = 'DecisionTreeClassifier.pkl'
# input data type for your sklearn model
input_data_type = [('float_input', FloatTensorType([1, 4]))]
# Change this path to the output name and path for the ONNX model
output_onnx_model = 'model.onnx'
# Load your sklearn model
skl_model = joblib.load(input_skl_model)
# Convert the sklearn model into ONNX
onnx_model = onnxmltools.convert_sklearn(skl_model, initial_types=input_data_type)
# Save as protobuf
onnxmltools.utils.save_model(onnx_model, output_onnx_model)
3.使用Netron查看pkl模型和onnx模型
查看pkl格式的模型
查看onnx格式的模型