Bootstrap

昇思25天学习打卡营第17天|LLM-基于MindSpore的GPT2文本摘要

打卡

目录

打卡

环境准备

准备阶段

数据加载与预处理

BertTokenizer

部分输出

模型构建

gpt2模型结构输出

训练流程

部分输出

部分输出2(减少训练数据)

推理流程


环境准备

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`

pip install mindnlp

准备阶段

nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

来源:nlpcc2017摘要数据

数据加载与预处理

  • 原始数据格式:
article: [CLS] article_context [SEP]
summary: [CLS] summary_context [SEP]
  • 预处理后的数据格式:
[CLS] article_context [SEP] summary_context [SEP]

BertTokenizer

因GPT2无中文的tokenizer,使用BertTokenizer替代。代码如下:

from mindspore.dataset import TextFileDataset
import json
import numpy as np
from mindnlp.transformers import BertTokenizer


# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def merge_and_pad(article, summary):
        # tokenization
        # pad to max_seq_length, only truncate the article
        tokenized = tokenizer(text=article, text_pair=summary,
                              padding='max_length', truncation='only_first', max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['input_ids']
    
    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    # change column names to input_ids and labels for the following training
    dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])

    dataset = dataset.batch(batch_size)
    if shuffle:
        dataset = dataset.shuffle(batch_size)

    return dataset


# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
print(dataset.get_dataset_size())   ### 50000

# split into training and testing dataset
train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)
print(len(train_dataset))  ### 45000

# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)

train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
## next(train_dataset.create_tuple_iterator())


部分输出

模型构建

如下,通过两个类实现:

  1. 构建GPT2ForSummarization模型,注意shift right的操作。
  2. 动态学习率
from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModel 
from mindspore.nn.learning_rate_schedule import LearningRateSchedule

from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModel
from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallback



class GPT2ForSummarization(GPT2LMHeadModel):
    def construct(
        self,
        input_ids = None,
        attention_mask = None,
        labels = None,
    ):
        outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
        shift_logits = outputs.logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        # Flatten the tokens
        loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
        return loss


class LinearWithWarmUp(LearningRateSchedule):
    """
    Warmup-decay learning rate.
    """
    def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
        super().__init__()
        self.learning_rate = learning_rate
        self.num_warmup_steps = num_warmup_steps
        self.num_training_steps = num_training_steps

    def construct(self, global_step):
        if global_step < self.num_warmup_steps:
            return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
        return ops.maximum(
            0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
        ) * self.learning_rate


## 训练参数设置
num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4

num_training_steps = num_epochs * train_dataset.get_dataset_size()


config = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)

lr_scheduler = LinearWithWarmUp(
        learning_rate=learning_rate, 
        num_warmup_steps=warmup_steps, 
        num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), 
                               learning_rate=lr_scheduler)

# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))

gpt2模型结构输出

1. 1级主类:GPT2ForSummarization

2. 2级类:GPT2Model 层,是transformer 结构,是模型的核心部分。

3. 2级类:lm_head 结构的 Dense 全连接层 , dim[in, out]=[768,  21128]。

4. GPT2Model 结构下的3级类组件分三层:

        >> wte 嵌入层:dim[in, out]=[21128, 768] ,即使用了 21128 个词汇,每个词汇映射到一个768 维的向量。

        >> wpe 嵌入层:dim[in, out]=[1024, 768] 

        >> drop 层。

        >> layers h 隐网络结构层:Transformer模型的主体,包含 12 个 GPT2Block。  

        >> ln_f LayerNorm 最后的层归一化。        

5. GPT2Block 的结构:

        》》ln_1 LayerNorm层,层归一化,用于在注意力机制之前对输入进行归一化。

        》》attn GPT2Attention层,自注意力机制,用于计算输入序列中不同位置的注意力权重。共包括3层:Conv1D、Conv1D、CustomDropout、CustomDropout。

        》》ln_2 LayerNorm层,用于自注意力之后的归一化。

        》》mlp  GPT2MLP层,多层感知机,用于对自注意力层的输出进行进一步的非线性变换。这里使用的操作包括:Conv1D、Conv1D、GELU、CustomDropout。
 

$ print(model)

GPT2ForSummarization<
  (transformer): GPT2Model<
    (wte): Embedding<vocab_size=21128, embedding_size=768, use_one_hot=False, weight=Parameter (Tensor(shape=[21128, 768], dtype=Float32, value=[...], name=transformer.wte.weight), requires_grad=True), dtype=Float32, padding_idx=None>
    (wpe): Embedding<vocab_size=1024, embedding_size=768, use_one_hot=False, weight=Parameter (Tensor(shape=[1024, 768], dtype=Float32, value=[...], name=transformer.wpe.weight), requires_grad=True), dtype=Float32, padding_idx=None>
    (drop): CustomDropout<>
    (h): CellList<
      (0): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.0.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (1): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.1.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (2): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.2.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (3): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.3.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (4): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.4.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (5): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.5.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (6): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.6.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (7): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.7.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (8): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.8.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (9): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.9.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (10): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.10.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      (11): GPT2Block<
        (ln_1): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_1.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_1.bias), requires_grad=True)>
        (attn): GPT2Attention<
          (c_attn): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (attn_dropout): CustomDropout<>
          (resid_dropout): CustomDropout<>
          >
        (ln_2): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_2.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.h.11.ln_2.bias), requires_grad=True)>
        (mlp): GPT2MLP<
          (c_fc): Conv1D<
            (matmul): Matmul<>
            >
          (c_proj): Conv1D<
            (matmul): Matmul<>
            >
          (act): GELU<>
          (dropout): CustomDropout<>
          >
        >
      >
    (ln_f): LayerNorm<normalized_shape=[768], begin_norm_axis=-1, begin_params_axis=-1, weight=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.ln_f.weight), requires_grad=True), bias=Parameter (Tensor(shape=[768], dtype=Float32, value=[...], name=transformer.ln_f.bias), requires_grad=True)>
    >
  (lm_head): Dense<input_channels=768, output_channels=21128>
  >

训练流程

from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModel
from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallback
 

# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))

ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',
                                epochs=1, keep_checkpoint_max=2)

trainer = Trainer(network=model, 
                  train_dataset=train_dataset,
                  epochs=1, 
                  optimizer=optimizer, 
                  callbacks=ckpoint_cb)
trainer.set_amp(level='O1')  # 开启混合精度

trainer.run(tgt_columns="labels")

部分输出

注:建议使用较高规格的算力,训练时间较长

部分输出2(减少训练数据)

此次活动的 notebook 只可以连续运行8小时,此次目的也不是性能优化,故此,我将训练数据减少到了1/10,此时的部分输出如下。

推理流程

## 向量数据转为中文数据
def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def pad(article):
        tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)
        return tokenized['input_ids']

    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    dataset = dataset.map(pad, 'article', ['input_ids'])
    
    dataset = dataset.batch(batch_size)

    return dataset


test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
print(next(test_dataset.create_tuple_iterator(output_numpy=True)))

model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)

model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():
    output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)
    output_text = tokenizer.decode(output_ids[0].tolist())
    print(output_text)
    i += 1
    if i == 1:
        break

减少训练数据后的模型推理结果展示。

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;