导语 | 5G网络下,多接入边缘计算(MEC)应运而生。结合TKEStack强大的集群管理能力和异构计算资源管理能力,腾讯打造了一个功能完备的边缘计算PaaS平台TMEC,提供了高精确度定位、视频处理、无线网络QoS控制和5G切片等多种特色业务能力,很好地支撑了车路协同、5G云游戏、视频直播等应用。本文是腾讯云技术专家杨勇&何猛老师在「云加社区沙龙online」的分享整理,希望与大家一同交流。
一、5G典型应用场景及其挑战
1. 从自动驾驶说起
自动驾驶在国际是非常热的话题,业界的标准分成了不同的等级,有的分成了5级、有的分成了6级。
如上图所示,国家工信部相关规范将自动驾驶等级标准定义为6级。目前国内的厂家和国际的一些厂家,绝大部分处于处于L2或者L3的水平。腾讯也有自动驾驶相关的产品,目前有数百人的团队从事自动驾驶等相关产品和技术的研发工作。
从实践落地的角度看,自动驾驶汽车商用的成熟性目前来看并不高,这中间存在很多问题,其中技术、成本和安全是阻碍自动驾驶产品规模商用的主要因素。
2. 自动驾驶技术和挑战
典型的自动驾驶车辆涉及到硬件和相关软件的系统性挑战。主要包括以下四个方面:
第一是高精地图,其中包括厘米级精度、丰富的路标数据和三维重建能力。
第二是多传感器,其中包括摄像头、激光雷达、毫米波雷达、超声传感器、惯导和卫星天线等。
第三是环境建模及智能决策,其中包括多传感器融合感知、道路和区域识别、环境模型构建、智能预测和决策等。
第四是车身控制,其中包括车辆自动控制、驾驶策略执行及规划。
总体来看,在目前的水平之下,整个自动驾驶车辆因为要安装多种传感器、工控机及系统控制软件,成本比较高昂,而且激光雷达等传感器的使用寿命也比较有限。业内人士曾经估算过,自动驾驶车辆的成本不会低于20万美元,这极大阻碍了自动驾驶汽车产品大规模商用落地。
3. 三大重点因素
即使自动驾驶车辆配备了这么多的专业传感器和其它专业设备,在一些异常情况下还是不能很好的解决实际路况上出现的一些安全问题,包括特斯拉在内的自动驾驶汽车曾出现多次交通事故,导致财产损失和人员伤亡。
比如,在超视距的情况下,车载传感器包括雷达或者摄像头检测不到转弯前方的车辆,或者从街角对面驶过来一个车辆,就很容易发生交通事故。
刚才也提到了从成本的角度来讲,自动驾驶车辆的成本是非常高昂的。
另外从出行效率角度来讲,作为交通管理部门或城市市政管理部门,提升交通出行效率是他们主要工作目标之一。但自动驾驶车辆在道路上行驶的时候,考虑安全因素,会相应采取一些比较保守的策略。
比如说它的行车速度可能会比较低,同时在发生异常事故的时候,它会减速或者停车避让,这就使得整个交通的效率并不能得到有效的提升。
4. 车联网的技术实现C-V2X
综合以上因素业界提出了 C-V2X 这个概念,这里面的 C 是蜂窝网络的意思, V2X 的全称是 vehicle to everything,就是说,基于蜂窝通信的 V2X 技术,使得车辆和道路所有参与方都能进行实时的数据交换,通过这种信息交换,来进一步提升包括车辆和其它参与方的安全性,同时提升出行效率。
我们看到 V2X 主要包括四种场景:
第一个是 V2V(车辆对车辆),它主要解决一些车辆之间的可能发生的一些异常状况,比如说车辆碰撞事件;
第二个是 V2I,就是车辆和路边基础设施,比如红绿灯等,通过车辆和红绿灯的数据交换来及时提醒车辆减速或者保持一定车速,引导车辆通过绿波带,既能提升行车安全,也可以提升车辆出行效率。
第三个 V2N,通过和通讯网络的交互来为驾乘人员提供一些个性化信息服务。
第四个 V2P,通过和行人之间的数据交换,来为行人或非机动车发出一些安全提醒。
C-V2X 的目标总体上涵盖信息服务、交通安全、交通效率和辅助自动驾驶,它的目标之一就是把单车解决不了的问题移到路端去解决,通过路侧设备和车辆之间的 C-V2X消息交互来进一步辅助自动驾驶,提升交通安全能力,提升道路出行效率,形成“聪明的车”和“聪明的路”。
5. 单车智能到云端智能
那么按照“聪明的车”到“聪明的路”的想法,我们是不是可以将完全依靠自动驾驶车辆本身所具备的智能决策能力给它迁移到云端上去实现?这样还可以大幅降低车辆的购置成本,而且因为云端有高性能、可扩展的计算能力,可以做很多车端胜任不了的计算任务。
另外我们知道,现在自动驾驶汽车在车端要做大量的基于计算机视觉或者雷达数据的路况实时分析,这种高性能计算在车辆计算单元上的处理,其准确性等方面还有待提升,如果能移到云端去做,准确性可能会提高很多,而且云端还可以做很多复杂的算术和逻辑运算。
但是这里有一个问题,即云端计算存在的时延问题。自动驾驶智能决策的时延要求非常高,如果移到云端去计算,整个数据链路拉长势必造成时延的增加,这就可能给自动驾驶业务带来严重的影响。例如车辆在高速公路上以120公里/小时的速度行驶,每秒钟就能行驶 30 多米,时延增大就可能会引发严重的交通事故。
所以移到云端是个不错的想法,但它又带来了时延方面的负面因素,这种情况就为边缘计算的部署提供了一个契机。也就是,把云端那些计算任务移到路侧的边缘计算平台上来进行,通过在路侧的基础设施上部署边缘计算平台和车联网的应用,从而对车辆进行实时的智能提醒和决策。