训练自己的中文word2vec(词向量)–skip-gram方法
什么是词向量
将单词映射/嵌入(Embedding)到一个新的空间,形成词向量,以此来表示词的语义信息,在这个新的空间中,语义相同的单词距离很近。
Skip-Gram方法(本次使用方法)
以某个词为中心,分别计算该中心词前后可能出现其他词的各个概率,即给定input word来预测上下文。
CBOW(Continous Bags Of Words,CBOW)
CBOW根据某个词前面的n个词、或者前后各n个连续的词,来计算某个词出现的概率,即给定上下文,来预测input word。相比Skip-Gram,CBOW更快一些。
本次使用 Skip-Gram方法和三国演义第一章作为数据,训练32维中文词向量。
数据代码下载链接见文末
导入库
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader
import re
import collections
import numpy as np
import jieba
#指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
导入数据
因为算力问题,我在此出只截取三国演义的第一章作为示例数据。
training_file = '/home/mw/input/sanguo5529/三国演义.txt'
#读取text文件,并选择第一章作为输入文本
def get_ch_lable(txt_file):
labels= ""
with open(txt_file, 'rb') as f:
for label in f:
labels =labels+label.decode('utf-8')
text = re.findall('第1章.*?第2章', labels,re.S)
return text[0]
training_data =get_ch_lable(training_file)
# print(training_data)
print("总字数",len(training_data))
总字数 4945
分词
#jieba分词
def fenci(training_data):
seg_list = jieba.cut(training_data) # 默认是精确模式
training_ci = " ".join(seg_list)
training_ci = training_ci.split()
#以空格将字符串分开
training_ci = np.array(training_ci)
training_ci = np.reshape(training_ci, [-1, ])
return training_ci
training_ci =fenci(training_data)
print("总词数",len(training_ci))
总词数 3053
构建词表
def build_dataset(words, n_words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0 # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
training_label, count, dictionary, words = build_dataset(training_ci, 3053)
#计算词频
word_count = np.array([freq for _,freq in count], dtype=np.float32)
word_freq = word_count / np.sum(word_count)#计算每个词的词频
word_freq = word_freq ** (3. / 4.)#词频变换
words_size = len(dictionary)
print("字典词数",words_size)
print('Sample data', training_label[:10], [words[i] for i in training_label[:10]])
字典词数 1456
Sample data [100, 305, 140, 306, 67, 101, 307, 308, 46, 27]
[‘第’, ‘1’, ‘章’, ‘宴’, ‘桃园’, ‘豪杰’, ‘三’, ‘结义’, ‘斩’, ‘黄巾’]
制作数据集
C = 3
num_sampled = 64 # 负采样个数
BATCH_SIZE = 32
EMBEDDING_SIZE = 32 #想要的词向量长度
class SkipGramDataset(Dataset):
def __init__(self, training_label, word_to_idx, idx_to_word, word_freqs):
super(SkipGramDataset, self).__init__()
self.text_encoded = torch.Tensor(training_label).long()
self.word_to_idx = word_to_idx
self.idx_to_word = idx_to_word
self.word_freqs = torch.Tensor(word_freqs)
def __len__(self):
return len(self.text_encoded)
def __getitem__(self, idx):
idx = min( max(idx,C),len(self.text_encoded)-2-C)#防止越界
center_word = self.text_encoded[idx]
pos_indices = list(range(idx-C, idx)) + list(range(idx+1, idx+1+C))
pos_words = self.text_encoded[pos_indices]
#多项式分布采样,取出指定个数的高频词
neg_words = torch.multinomial(self.word_freqs, num_sampled+2*C, False)#True)
#去掉正向标签
neg_words = torch.Tensor(np.setdiff1d(neg_words.numpy(),pos_words.numpy())[:num_sampled]).long()
return center_word, pos_words, neg_words
print('制作数据集...')
train_dataset = SkipGramDataset(training_label, dictionary, words, word_freq)
dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE,drop_last=True, shuffle=True)
制作数据集…
#将数据集转化成迭代器
sample = iter(dataloader)
#从迭代器中取出一批次样本
center_word, pos_words, neg_words = sample.next()
print(center_word[0],words[np.compat.long(center_word[0])],[words[i] for i in pos_words[0].numpy()])
模型构建
class Model(nn.Module):
def __init__(self, vocab_size, embed_size):
super(Model, self).__init__()
self.vocab_size = vocab_size
self.embed_size = embed_size
initrange = 0.5 / self.embed_size
self.in_embed = nn.Embedding(self.vocab_size, self.embed_size, sparse=False)
self.in_embed.weight.data.uniform_(-initrange, initrange)
def forward(self, input_labels, pos_labels, neg_labels):
input_embedding = self.in_embed(input_labels)
pos_embedding = self.in_embed(pos_labels)
neg_embedding = self.in_embed(neg_labels)
log_pos = torch.bmm(pos_embedding, input_embedding.unsqueeze(2)).squeeze()
log_neg = torch.bmm(neg_embedding, -input_embedding.unsqueeze(2)).squeeze()
log_pos = F.logsigmoid(log_pos).sum(1)
log_neg = F.logsigmoid(log_neg).sum(1)
loss = log_pos + log_neg
return -loss
model = Model(words_size, EMBEDDING_SIZE).to(device)
model.train()
valid_size = 32
valid_window = words_size/2 # 取样数据的分布范围.
valid_examples = np.random.choice(int(valid_window), valid_size, replace=False)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
NUM_EPOCHS = 10
开始训练
for e in range(NUM_EPOCHS):
for ei, (input_labels, pos_labels, neg_labels) in enumerate(dataloader):
input_labels = input_labels.to(device)
pos_labels = pos_labels.to(device)
neg_labels = neg_labels.to(device)
optimizer.zero_grad()
loss = model(input_labels, pos_labels, neg_labels).mean()
loss.backward()
optimizer.step()
if ei % 20 == 0:
print("epoch: {}, iter: {}, loss: {}".format(e, ei, loss.item()))
if e %40 == 0:
norm = torch.sum(model.in_embed.weight.data.pow(2),-1).sqrt().unsqueeze(1)
normalized_embeddings = model.in_embed.weight.data / norm
valid_embeddings = normalized_embeddings[valid_examples]
similarity = torch.mm(valid_embeddings, normalized_embeddings.T)
for i in range(valid_size):
valid_word = words[valid_examples[i]]
top_k = 8 # 取最近的排名前8的词
nearest = (-similarity[i, :]).argsort()[1:top_k + 1] #argsort函数返回的是数组值从小到大的索引值
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = words[nearest[k].cpu().item()]
log_str = '%s,%s' % (log_str, close_word)
print(log_str)
epoch: 0, iter: 0, loss: 48.52019500732422
epoch: 0, iter: 20, loss: 48.51792526245117
epoch: 0, iter: 40, loss: 48.50772476196289
epoch: 0, iter: 60, loss: 48.50897979736328
epoch: 0, iter: 80, loss: 48.45783996582031
Nearest to 伏山:,王,送,话,遥望,操忽心生,江渚上,接,提刀
Nearest to 与:,”,将次,盖地,,,下文,。,妖术,玄德
Nearest to 必获:,听调,直取,各处,一端,奏帝,必出,遥望,入帐
Nearest to 郭胜十人:,南华,因为,把,贼战,告变,处,擒,玄德遂
Nearest to 官军:,秀才,统兵,说起,军齐出,四散,放荡,一彪,云长
Nearest to 碧眼:,名备,刘焉然,大汉,卷入,大胜,老人,重枣,左有
Nearest to 天书:,泛溢,约期,而进,龚景,因起,车盖,遂解,震
Nearest to 转头:,近因,直取,接,七尺,王,备下,大汉,齐声
Nearest to 张宝:,侯览,惊告嵩,誓毕,帝惊,呼风唤雨,狂风,大将军,曾
Nearest to 玄德幼:,直取,近闻,刘焉令,几度,崩,临江仙,右有翼德,左右两
Nearest to 不祥:,无数,调兵,项,刘备,玄德谢,原来,八尺,共
Nearest to 靖:,操忽心生,此病,赵忠,刘焉然,崩,庄田,剑,传至
Nearest to 五千:,岂可,丹凤眼,北行,听罢,”,性命,卓,之囚
Nearest to 日非:,赵忠,矣,闻得,蜺,破贼,早丧,书报,忽起
Nearest to 徐:,震怒,我气,卢植,”,结为,、,燕颔虎须,。
Nearest to 五百余:,帝惊,普,本部,三,神功,桓帝,滚滚,左右两
Nearest to 而:,转头,卷入,祭,近因,大商,章,人公,天子
Nearest to 去:,封谞,夏恽,周末,必,嵩信,广宗,人氏,民心
Nearest to 上:,灵,文,陷邕,四年,关羽,直赶,九尺,伏山
Nearest to ::,“,曰,飞,是,兄弟,喜,来代,我答
Nearest to 后:,必获,阁下,字,手起,祭礼,侍奉,各处,奏帝
Nearest to 因起:,帝览奏,青,!,汝可引,夺路,一把,是非成败,卷入
Nearest to 骤起:,挟恨,张宝称,明公宜,议,一统天下,又,擒,玄德请
Nearest to 汉室:,六月,临江仙,今汉运,手起,威力,抹额,讹言,提刀
Nearest to 云游四方:,背义忘恩,复,渔樵,地公,扬鞭,若,故冒姓,截住
Nearest to 桓:,崩,赵忠,刘焉然,左有,刘备,名备,二帝,游荡
Nearest to 二字于:,操故,分,白土,左右两,张角本,赏劳,当时,梁上
Nearest to 人出:,多,五十匹,肩,奏帝,梁上,九尺,六月,大汉
Nearest to 大浪:,卷入,临江仙,听调,汉武时,左有,束草,围城,及
Nearest to 青:,夺路,肩,贩马,师事,围城,卷入,大胜,客人
Nearest to 郎蔡邕:,浊酒,近闻,六月,角战于,中郎将,崩,转头,众大溃
Nearest to 二月:,马舞刀,国谯郡,只见,内外,郎蔡邕,豪,落到,汝得
epoch: 1, iter: 0, loss: 48.46757888793945
epoch: 1, iter: 20, loss: 48.42853546142578
epoch: 1, iter: 40, loss: 48.35804748535156
epoch: 1, iter: 60, loss: 48.083805084228516
epoch: 1, iter: 80, loss: 48.1635856628418
epoch: 2, iter: 0, loss: 47.89817428588867
epoch: 2, iter: 20, loss: 48.067501068115234
epoch: 2, iter: 40, loss: 48.6464729309082
epoch: 2, iter: 60, loss: 47.825260162353516
epoch: 2, iter: 80, loss: 48.07224655151367
epoch: 3, iter: 0, loss: 48.15058898925781
epoch: 3, iter: 20, loss: 47.26418685913086
epoch: 3, iter: 40, loss: 47.87504577636719
epoch: 3, iter: 60, loss: 48.74541473388672
epoch: 3, iter: 80, loss: 48.01288986206055
epoch: 4, iter: 0, loss: 47.257896423339844
epoch: 4, iter: 20, loss: 48.337745666503906
epoch: 4, iter: 40, loss: 47.70765686035156
epoch: 4, iter: 60, loss: 48.57493591308594
epoch: 4, iter: 80, loss: 48.206268310546875
epoch: 5, iter: 0, loss: 47.139137268066406
epoch: 5, iter: 20, loss: 48.70667266845703
epoch: 5, iter: 40, loss: 47.97750473022461
epoch: 5, iter: 60, loss: 48.098899841308594
epoch: 5, iter: 80, loss: 47.778892517089844
epoch: 6, iter: 0, loss: 47.86349105834961
epoch: 6, iter: 20, loss: 47.77979278564453
epoch: 6, iter: 40, loss: 48.67324447631836
epoch: 6, iter: 60, loss: 48.117042541503906
epoch: 6, iter: 80, loss: 48.69907760620117
epoch: 7, iter: 0, loss: 47.63265609741211
epoch: 7, iter: 20, loss: 47.82151794433594
epoch: 7, iter: 40, loss: 48.54405212402344
epoch: 7, iter: 60, loss: 48.06487274169922
epoch: 7, iter: 80, loss: 48.67494583129883
epoch: 8, iter: 0, loss: 48.053466796875
epoch: 8, iter: 20, loss: 47.872459411621094
epoch: 8, iter: 40, loss: 47.462432861328125
epoch: 8, iter: 60, loss: 48.10865783691406
epoch: 8, iter: 80, loss: 46.380184173583984
epoch: 9, iter: 0, loss: 47.2872314453125
epoch: 9, iter: 20, loss: 48.553428649902344
epoch: 9, iter: 40, loss: 47.00652313232422
epoch: 9, iter: 60, loss: 47.970741271972656
epoch: 9, iter: 80, loss: 48.159828186035156
查看训练好的词向量
final_embeddings = normalized_embeddings
labels = words[10]
print(labels)
print(final_embeddings[10])
玄德
tensor([-0.2620, 0.0660, 0.0464, 0.2948, -0.1974, 0.2471, -0.0893, 0.1720,
-0.1488, 0.0283, -0.1165, 0.2156, -0.1642, -0.2376, -0.0356, -0.0607,
0.1985, -0.2166, 0.2222, 0.2453, -0.1414, -0.0526, 0.1153, -0.1325,
-0.2964, 0.2775, -0.0637, -0.0716, 0.2672, 0.0539, 0.1697, 0.0489])
with open('skip-gram-sanguo.txt', 'a') as f:
for i in range(len(words)):
f.write(words[i] + str(list(final_embeddings.numpy()[i])) + '\n')
f.close()
print('word vectors have written done.')
word vectors have written done.
按照路径/home/mw/project/skip-gram-sanguo.txt查看保存的文件,不一定要保存为txt,我们平常加载的词向量更多是vec格式