1.红黑树相关迭代器的实现
1.1operator++
在自增/减时要满足红黑树中序遍历的顺序:左子树、根、右子树(符合递增或递减)
++时:
右子树存在,找到右子树中的最左节点
右子树不存在,向上层遍历,直到当前节点是其父节点的左节点,取父节点(左、中)
Self& operator++()
{
if (_node->_right)
{
// 下一个,右树最左节点
Node* leftMin = _node->_right;
while (leftMin->_left)
{
leftMin = leftMin->_left;
}
_node = leftMin;
}
else
{
// 下一个,孩子等于父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
–时同理:
左子树存在,找到左子树中的最右节点
左子树不存在,找到孩子是父亲右节点的祖先节点
1.2operator[]
[k]返回v,map是kv模型,可以实现[],set不能,这里的operator[]在map的封装中实现。
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = _t.Insert(make_pair(key, V()));
return ret.first->second;
}
1.3其他接口
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
Iterator Begin()
{
Node* leftMin = _root;
while (leftMin && leftMin->_left)
{
leftMin = leftMin->_left;
}
return Iterator(leftMin);
}
Iterator End()
{
return Iterator(nullptr);
}
ConstIterator End() const
{
return ConstIterator(nullptr);
}
ConstIterator Begin() const
{
Node* leftMin = _root;
while (leftMin && leftMin->_left)
{
leftMin = leftMin->_left;
}
return ConstIterator(leftMin);
}
Iterator Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return Iterator(cur);
}
}
return End();
}
// 20:10
pair<Iterator, bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(Iterator(_root), true);
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
// K
// pair<K, V>
// kot对象,是用来取T类型的data对象中的key
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(Iterator(cur), false);
}
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED; // 新增节点给红色
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
// parent的颜色是黑色也结束
while (parent && parent->_col == RED)
{
// 关键看叔叔
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
if (cur == parent->_left)
{
// g
// p u
// c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(Iterator(newnode), true);
}
2.KeyOfT
map和set的底层都是红黑树,但map是kv模型,而set是k模型。在取key值时,set能直接取,但map要取kv.first。这时候我们可以用一个KeyOfT的类去获得map和set里面的k值。
在底层红黑树取k值时分别通过set和map中KetOfT的仿函数取到对应k值。
3.map 封装
#pragma once
#include"RBT.h"
#include<iostream>
using namespace std;
namespace bit
{
template<class K, class V>
class Mymap
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
typedef typename RBTree<K, const K, MapKeyOfT>::ConstIterator const_iterator;
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
iterator find(const K& key)
{
return _t.Find(key);
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = _t.Insert(make_pair(key, V()));
return ret.first->second;
}
private:
RBTree<K, pair<const K, V>, MapKeyOfT> _t;
};
void test_map()
{
Mymap<string, int> m;
m.insert({ "苹果",1 });
m.insert({ "菠萝",5 });
m.insert({ "香蕉",2 });
m.insert({ "西瓜",3 });
Mymap<string, int>::iterator it = m.begin();
while (it != m.end())
{
it->second += 1;
//cout << it.operator->()->first << ":" << it->second << endl;
cout << it->first << ":" << it->second << endl;
++it;
}
cout << endl;
}
}
4.set封装
#pragma once
#include"RBT.h"
#include<iostream>
using namespace std;
namespace bit
{
template<class K>
class set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
iterator find(const K& key)
{
return _t.Find(key);
}
pair<iterator, bool> insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K, const K, SetKeyOfT> _t;
};
void PrintSet(const set<int>& s)
{
for (auto e : s)
{
cout << e << endl;
}
}
void test_set()
{
set<int> s;
s.insert(4);
s.insert(2);
s.insert(5);
s.insert(15);
s.insert(7);
s.insert(1);
s.insert(5);
s.insert(7);
PrintSet(s);
set<int>::iterator it = s.begin();
while (it != s.end())
{
//*it += 5;
cout << *it << " ";
++it;
}
cout << endl;
for (auto e : s)
{
cout << e << " ";
}
cout << endl;
set<int> copy = s;
for (auto e : copy)
{
cout << e << " ";
}
cout << endl;
//cout << copy._t.IsBalance() << endl;
}
}
5.测试
#include"mymap.h"
#include"myset.h"
int main()
{
bit::test_map();
bit::test_set();
return 0;
}
6.源码
6.1RBT.h
#pragma once
#include<vector>
#include<iostream>
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
, _col(RED)
{}
};
template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef __RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
__RBTreeIterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
bool operator!=(const Self& s)
{
return _node != s._node;
}
Self& operator++()
{
if (_node->_right)
{
// 下一个,右树最左节点
Node* leftMin = _node->_right;
while (leftMin->_left)
{
leftMin = leftMin->_left;
}
_node = leftMin;
}
else
{
// 下一个,孩子等于父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
};
template<class K, class T, class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef __RBTreeIterator<T, T&, T*> Iterator;
typedef __RBTreeIterator<T, const T&, const T*> ConstIterator;
RBTree() = default;
RBTree(const RBTree<K, T, KeyOfT>& t)
{
_root = Copy(t._root);
}
// t2 = t1
RBTree<K, T, KeyOfT>& operator=(RBTree<K, T, KeyOfT> t)
{
swap(_root, t._root);
return *this;
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
Iterator Begin()
{
Node* leftMin = _root;
while (leftMin && leftMin->_left)
{
leftMin = leftMin->_left;
}
return Iterator(leftMin);
}
Iterator End()
{
return Iterator(nullptr);
}
ConstIterator End() const
{
return ConstIterator(nullptr);
}
ConstIterator Begin() const
{
Node* leftMin = _root;
while (leftMin && leftMin->_left)
{
leftMin = leftMin->_left;
}
return ConstIterator(leftMin);
}
Iterator Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return Iterator(cur);
}
}
return End();
}
// 20:10
pair<Iterator, bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(Iterator(_root), true);
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
// K
// pair<K, V>
// kot对象,是用来取T类型的data对象中的key
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(Iterator(cur), false);
}
}
cur = new Node(data);
Node* newnode = cur;
cur->_col = RED; // 新增节点给红色
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
// parent的颜色是黑色也结束
while (parent && parent->_col == RED)
{
// 关键看叔叔
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
if (cur == parent->_left)
{
// g
// p u
// c
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(Iterator(newnode), true);
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
_root->_parent = nullptr;
}
else
{
if (ppNode->_right == parent)
{
ppNode->_right = subR;
}
else
{
ppNode->_left = subR;
}
subR->_parent = ppNode;
}
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBalance()
{
if (_root->_col == RED)
{
return false;
}
int refNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
++refNum;
}
cur = cur->_left;
}
return Check(_root, 0, refNum);
}
private:
Node* Copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* newroot = new Node(root->_data);
newroot->_col = root->_col;
newroot->_left = Copy(root->_left);
if (newroot->_left)
newroot->_left->_parent = newroot;
newroot->_right = Copy(root->_right);
if (newroot->_right)
newroot->_right->_parent = newroot;
return newroot;
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
root = nullptr;
}
bool Check(Node* root, int blackNum, const int refNum)
{
if (root == nullptr)
{
//cout << blackNum << endl;
if (refNum != blackNum)
{
cout << "存在黑色节点的数量不相等的路径" << endl;
return false;
}
return true;
}
if (root->_col == RED && root->_parent->_col == RED)
{
//cout << root->_kv.first << "存在连续的红色节点" << endl;
return false;
}
if (root->_col == BLACK)
{
blackNum++;
}
return Check(root->_left, blackNum, refNum)
&& Check(root->_right, blackNum, refNum);
}
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_kv.first << ":" << root->_kv.second << endl;
_InOrder(root->_right);
}
private:
Node* _root = nullptr;
//size_t _size = 0;
};