Bootstrap

代码随想录算法训练营第42天:动态第二步

代码随想录算法训练营第42天:动态第二步

本周小结!(动态规划系列一)

这周我们正式开始动态规划的学习!

#周一

关于动态规划,你该了解这些! ​**(opens new window)** 中我们讲解了动态规划的基础知识。

首先讲一下动规和贪心的区别,其实大家不用太强调理论上的区别,做做题,就感受出来了。

然后我们讲了动规的五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

后序我们在讲解动规的题目时候,都离不开这五步!

本周都是简单题目,大家可能会感觉 按照这五部来好麻烦,凭感觉随手一写,直接就过,越到后面越会感觉,凭感觉这个事还是不靠谱的。

最后我们讲了动态规划题目应该如何debug,相信一些录友做动规的题目,一旦报错也是凭感觉来改。

其实只要把dp数组打印出来,哪里有问题一目了然!

如果代码写出来了,一直AC不了,灵魂三问:

  1. 这道题目我举例推导状态转移公式了么?
  2. 我打印dp数组的日志了么?
  3. 打印出来了dp数组和我想的一样么?

专治各种代码写出来了但AC不了的疑难杂症。

#周二

这道题目动态规划:斐波那契数 ​**(opens new window)** 是当之无愧的动规入门题。

简单题,我们就是用来了解方法论的,用动规五部曲走一遍,题目其实已经把递推公式,和dp数组如何初始化都给我们了。

#周三

动态规划:爬楼梯 ​**(opens new window)** 这道题目其实就是斐波那契数列。

但正常思考过程应该是推导完递推公式之后,发现这是斐波那契,而不是上来就知道这是斐波那契。

在这道题目的第三步,确认dp数组如何初始化,其实就可以看出来,对dp[i]定义理解的深度。

dp[0]其实就是一个无意义的存在,不用去初始化dp[0]。

有的题解是把dp[0]初始化为1,然后遍历的时候i从2开始遍历,这样是可以解题的,然后强行解释一波dp[0]应该等于1的含义。

一个严谨的思考过程,应该是初始化dp[1] = 1,dp[2] = 2,然后i从3开始遍历,代码如下:

dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) { // 注意i是从3开始的
dp[i] = dp[i - 1] + dp[i - 2];
}

这个可以是面试的一个小问题,考察候选人对dp[i]定义的理解程度。

这道题目还可以继续深化,就是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。

这又有难度了,这其实是一个完全背包问题,但力扣上没有这种题目,所以后续我在讲解背包问题的时候,今天这道题还会拿从背包问题的角度上来再讲一遍。

这里我先给出我的实现代码:

class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) { // 把m换成2,就可以AC爬楼梯这道题
if (i - j >= 0) dp[i] += dp[i - j];
}
}
return dp[n];
}
};

代码中m表示最多可以爬m个台阶。

以上代码不能运行哈,我主要是为了体现只要把m换成2,粘过去,就可以AC爬楼梯这道题,不信你就粘一下试试

此时我就发现一个绝佳的大厂面试题,第一道题就是单纯的爬楼梯,然后看候选人的代码实现,如果把dp[0]的定义成1了,就可以发难了,为什么dp[0]一定要初始化为1,此时可能候选人就要强行给dp[0]应该是1找各种理由。那这就是一个考察点了,对dp[i]的定义理解的不深入。

然后可以继续发难,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。这道题目leetcode上并没有原题,绝对是考察候选人算法能力的绝佳好题。

这一连套问下来,候选人算法能力如何,面试官心里就有数了。

其实大厂面试最喜欢问题的就是这种简单题,然后慢慢变化,在小细节上考察候选人

这道绝佳的面试题我没有用过,如果录友们有面试别人的需求,就把这个套路拿去吧。

我在通过一道面试题目,讲一讲递归算法的时间复杂度! ​**(opens new window)** 中,以我自己面试别人的真实经历,通过求x的n次方 这么简单的题目,就可以考察候选人对算法性能以及递归的理解深度,录友们可以看看,绝对有收获!

#周四

这道题目动态规划:使用最小花费爬楼梯 ​**(opens new window)** 就是在爬台阶的基础上加了一个花费,

这道题描述也确实有点魔幻。

题目描述为:每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

示例1:

输入:cost = [10, 15, 20] 输出:15

从题目描述可以看出:要不是第一步不需要花费体力,要不就是第最后一步不需要花费体力,我个人理解:题意说的其实是第一步是要支付费用的! 。因为是当你爬上一个台阶就要花费对应的体力值!

所以我定义的dp[i]意思是也是第一步是要花费体力的,最后一步不用花费体力了,因为已经支付了。

之后一些录友在留言区说 可以定义dp[i]为:第一步是不花费体力,最后一步是花费体力的。

所以代码也可以这么写:

class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0; // 默认第一步都是不花费体力的
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};

这么写看上去比较顺,但是就是感觉和题目描述的不太符。也没有必要这么细扣题意了,大家只要知道,题目的意思反正就是要不是第一步不花费,要不是最后一步不花费,都可以。

#总结

本周题目简单一些,也非常合适初学者来练练手。

下周开始上难度了哈,然后大下周就开始讲解背包问题,好戏还在后面,录友们跟上哈。

学算法,认准「代码随想录」就够了,Carl带你打怪升级!

62.不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 动态规划中如何初始化很重要!| LeetCode:62.不同路径 ****(opens new window)****​ ,相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

#深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

62.不同路径

此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:
int dfs(int i, int j, int m, int n) {
if (i > m || j > n) return 0; // 越界了
if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
}
public:
int uniquePaths(int m, int n) {
return dfs(1, 1, m, n);
}
};

大家如果提交了代码就会发现超时了!

来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

#动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n);
for (int i = 0; i < n; i++) dp[i] = 1;
for (int j = 1; j < m; j++) {
for (int i = 1; i < n; i++) {
dp[i] += dp[i - 1];
}
}
return dp[n - 1];
}
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

#数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

那么答案,如图所示:

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

例如如下代码是不行的。

class Solution {
public:
int uniquePaths(int m, int n) {
int numerator = 1, denominator = 1;
int count = m - 1;
int t = m + n - 2;
while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出
for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母
return numerator / denominator;
}
};

需要在计算分子的时候,不断除以分母,代码如下:

class Solution {
public:
int uniquePaths(int m, int n) {
long long numerator = 1; // 分子
int denominator = m - 1; // 分母
int count = m - 1;
int t = m + n - 2;
while (count--) {
numerator *= (t--);
while (denominator != 0 && numerator % denominator == 0) {
numerator /= denominator;
denominator--;
}
}
return numerator;
}
};
  • 时间复杂度:O(m)
  • 空间复杂度:O(1)

计算组合问题的代码还是有难度的,特别是处理溢出的情况!

#总结

本文分别给出了深搜,动规,数论三种方法。

深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。

然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!

63. 不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]

  • 输出:2 解释:

  • 3x3 网格的正中间有一个障碍物。

  • 从左上角到右下角一共有 2 条不同的路径:

    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 动态规划,这次遇到障碍了| LeetCode:63. 不同路径 II ****(opens new window)****​ ,相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

这道题相对于62.不同路径 ​**(opens new window)** 就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 ​**(opens new window)** 中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
  1. dp数组如何初始化

62.不同路径 ​**(opens new window)** 不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
  1. 举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
	if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样我们给出空间优化版本:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid[0][0] == 1)
return 0;
vector<int> dp(obstacleGrid[0].size());
for (int j = 0; j < dp.size(); ++j)
if (obstacleGrid[0][j] == 1)
dp[j] = 0;
else if (j == 0)
dp[j] = 1;
else
dp[j] = dp[j-1];

for (int i = 1; i < obstacleGrid.size(); ++i)
for (int j = 0; j < dp.size(); ++j){
if (obstacleGrid[i][j] == 1)
dp[j] = 0;
else if (j != 0)
dp[j] = dp[j] + dp[j-1];
}
return dp.back();
}
};
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)

#总结

本题是62.不同路径 ​**(opens new window)** 的障碍版,整体思路大体一致。

但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。

其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。

也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。

;