Bootstrap

Java中高级核心知识全面解析——数据结构(布隆过滤器【原理介绍、使用场景、如何实现】、Redis中的布隆过滤器)

}
}
/**

  • 添加元素到位数组
    /
    public void add(Object value) {
    for (SimpleHash f : func) {
    bits.set(f.hash(value), true);
    }
    }
    /
    *
  • 判断指定元素是否存在于位数组
    /
    public Boolean contains(Object value) {
    Boolean ret = true;
    for (SimpleHash f : func) {
    ret = ret && bits.get(f.hash(value));
    }
    return ret;
    }
    /
    *
  • 静态内部类。用于 hash 操作!
    /
    public static class SimpleHash {
    private int cap;
    private int seed;
    public SimpleHash(int cap, int seed) {
    this.cap = cap;
    this.seed = seed;
    }
    /
    *
  • 计算 hash 值
    */
    public int hash(Object value) {
    int h;
    return (value == null) ? 0 : Math.abs(seed * (cap - 1) & ((h = value.hashCode()) ^ (h >>> 16)));
    }
    }
    }

测试:

String value1 = “https://javaguide.cn/”;
String value2 = “https://github.com/Snailclimb”;
MyBloomFilter filter = new MyBloomFilter();
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));
filter.add(value1);
filter.add(value2);
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));

Output:

false
false
true
true

测试:

Integer value1 = 13423;
Integer value2 = 22131;
MyBloomFilter filter = new MyBloomFilter();
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));
filter.add(value1);
filter.add(value2);
System.out.println(filter.contains(value1));
System.out.println(filter.contains(value2));

Output:

false
false
true
true

五、利用Google开源的 Guava中自带的布隆过滤器

自己实现的目的主要是为了让自己搞懂布隆过滤器的原理,Guava 中布隆过滤器的实现算是比较权威的,所以实际项目中我们不需要手动实现一个布隆过滤器。

首先我们需要在项目中引入 Guava 的依赖:

com.google.guava guava 28.0-jre

实际使用如下:

我们创建了一个最多存放 最多 1500个整数的布隆过滤器,并且我们可以容忍误判的概率为百分之(0.01)

// 创建布隆过滤器对象
BloomFilter filter = BloomFilter.create(
Funnels.integerFunnel(),
1500,
0.01);
// 判断指定元素是否存在
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));
// 将元素添加进布隆过滤器
filter.put(1);
filter.put(2);
System.out.println(filter.mightContain(1));
System.out.println(filter.mightContain(2));

在我们的示例中,当 mightContain() 方法返回true时,我们可以99%确定该元素在过滤器中,当过滤器返回false时,我们可以100%确定该元素不存在于过滤器中。

Guava 提供的布隆过滤器的实现还是很不错的(想要详细了解的可以看一下它的源码实现),但是它有一个重大的缺陷就是只能单机使用(另外,容量扩展也不容易),而现在互联网一般都是分布式的场景。为了解决这个问题,我们就需要用到 Redis 中的布隆过滤器了。

六、Redis 中的布隆过滤器

1.介绍

Redis v4.0 之后有了 Module(模块/插件) 功能,Redis Modules 让 Redis 可以使用外部模块扩展其功能 。布隆过滤器就是其中的 Module。

另外,官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom。其他还有:

  • redis-lua-scaling-bloom-filter (lua 脚本实现):https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter
  • pyreBloom(Python中的快速Redis 布隆过滤器) :https://github.com/seomoz/pyreBloom

RedisBloom 提供了多种语言的客户端支持,包括:PythonJavaJavaScriptPHP

2.使用Docker安装

具体操作如下:

➜ ~ docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest
➜ ~ docker exec -it redis-redisbloom bash
root@21396d02c252:/data# redis-cli
127.0.0.1:6379>

3.常用命令一览

注意: key:布隆过滤器的名称,item : 添加的元素。

  1. BF.ADD:将元素添加到布隆过滤器中,如果该过滤器尚不存在,则创建该过滤器。格式:BF.ADD {key} {item}
  2. BF.MADD : 将一个或多个元素添加到“布隆过滤器”中,并创建一个尚不存在的过滤器。该命令的操作方式 BF.ADD 与之相同,只不过它允许多个输入并返回多个值。格式:BF.MADD {key} {item} [item ...]
  3. BF.EXISTS: 确定元素是否在布隆过滤器中存在。格式:BF.EXISTS {key} {item}
  4. BF.MEXISTS: 确定一个或者多个元素是否在布隆过滤器中存在格式: BF.MEXISTS {key} {item} [item ...]

另外,BF.RESERVE命令需要单独介绍一下:

这个命令的格式如下:

BF.RESERVE {key} {error_rate} {capacity} [EXPANSION expansion]

下面简单介绍一下每个参数的具体含义:

  1. key:布隆过滤器的名称
  2. error_rate :误报的期望概率。这应该是介于0到1之间的十进制值。例如,对于期望的误报率0.1%(1000中为1),error_rate应该设置为0.001。该数字越接近零,则每个项目的内存消耗越大,并且每个操作的CPU使用率越高。
  3. capacity: 过滤器的容量。当实际存储的元素个数超过这个值之后,性能将开始下降。实际的降级将取决于超出限制的程度。随着过滤器元素数量呈指数增长,性能将线性下降。

可选参数:

  • expansion:如果创建了一个新的子过滤器,则其大小将是当前过滤器的大小乘以 expansion 。默认扩展值为2。这意味着每个后续子过滤器将是前一个子过滤器的两倍。

4.实际使用

127.0.0.1:6379> BF.ADD myFilter java
(integer)
1 127.0.0.1:6379> BF.ADD myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter java
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0

参考资料:《Java中高级核心知识全面解析》

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

总结

虽然面试套路众多,但对于技术面试来说,主要还是考察一个人的技术能力和沟通能力。不同类型的面试官根据自身的理解问的问题也不尽相同,没有规律可循。

上面提到的关于这些JAVA基础、三大框架、项目经验、并发编程、JVM及调优、网络、设计模式、spring+mybatis源码解读、Mysql调优、分布式监控、消息队列、分布式存储等等面试题笔记及资料

有些面试官喜欢问自己擅长的问题,比如在实际编程中遇到的或者他自己一直在琢磨的这方面的问题,还有些面试官,尤其是大厂的比如 BAT 的面试官喜欢问面试者认为自己擅长的,然后通过提问的方式深挖细节,刨根到底。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
,比如在实际编程中遇到的或者他自己一直在琢磨的这方面的问题,还有些面试官,尤其是大厂的比如 BAT 的面试官喜欢问面试者认为自己擅长的,然后通过提问的方式深挖细节,刨根到底。
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;