Bootstrap

这段时间搞大模型的血和泪,经验!干货!踩坑!

李沐大神最近分享了很多,我来舔着脸跟一笔,写下近段时间研发上面的血泪史。

1. 按照目前的发展,大部分实验室在LLM上很难搞到百亿以上的参数量了,对更大模型(dense或者MoE)也只能说望而却步了;我们烧尽个人腰包和经费也只能勉强碰到500多亿的MoE,并且代价是到明年就是穷光蛋一个。

2. 实际落地里面,不可能指望单独一个LLM放在那儿完成任务,不论是多强的模型也不行,尊重工程、产业和商业逻辑。

3.模型本身的迭代重度依赖数据,数据的迭代也需要依靠肉眼和拍脑袋。从模型结构上基本上是Transformer(+少量mamba、rmkv等,虽然我们没试过),这个点我们反正没资源去纠结了,然后就是玄学N件套比如调参和babysitting。

4. 由于单次实验成本过高,半自动化、自动化评测都不能全信,叠加主观评测的话导致sop严重滞后,所以再留下来了一系列的玄学,中间未解之谜根本没有资源探索。比如说我们经常出现:15天前训练到xxxx个step的那个模型效果是最好的,而且数据和模型版本管理基本混乱,只能靠时间戳+锁死评测关口,结果至上。

5. 和硬件的绑定是下一步关键:一方面,供给侧上如果有更强的ASIC来支撑,那训练和推理的成本会进一步降低,探索空间也会扩大;另外一方面,输出侧和硬件绑定是未来(目前具身智能暂时没法用大模型),以及各种可穿戴设备(例如rayban+meta的尝试)。

6. LLM输入侧会进一步扩展到其他模态;例如VLM/VLA输入包含图像和视频信息,我们TableGPT是搞那些结构化数据(包括db、传感器数据etc),还有语音等等。

7. LLM输出侧的扩展是未来啊,除了输出语言、代码、思维步骤,还需要对接各类硬件设备的接口、SDK等等,这里的稳定性和工程加工兜底一定是短期内关键中的关键。

8. 安全性对齐,或者大模型输出"不出框"的对齐工作,我还是看好那些新的东西,比如说世界模型Verifier啥的:https://arxiv.org/abs/2405.0662

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

;