Bootstrap

JAVA 线上故障排查完整套路

gc 问题除了影响 CPU 也会影响内存,排查思路也是一致的。一般先使用 jstat 来查看分代变化情况,比如 youngGC 或者 fullGC 次数是不是太多呀;EU、OU 等指标增长是不是异常呀等。

线程的话太多而且不被及时 gc 也会引发 oom,大部分就是之前说的unable to create new native thread。除了 jstack 细细分析 dump 文件外,我们一般先会看下总体线程,通过pstreee -p pid |wc -l。

JAVA 线上故障排查完整套路

或者直接通过查看/proc/pid/task的数量即为线程数量。

JAVA 线上故障排查完整套路

堆外内存

如果碰到堆外内存溢出,那可真是太不幸了。首先堆外内存溢出表现就是物理常驻内存增长快,报错的话视使用方式都不确定,如果由于使用 Netty 导致的,那错误日志里可能会出现OutOfDirectMemoryError错误,如果直接是 DirectByteBuffer,那会报OutOfMemoryError: Direct buffer memory。

堆外内存溢出往往是和 NIO 的使用相关,一般我们先通过 pmap 来查看下进程占用的内存情况pmap -x pid | sort -rn -k3 | head -30,这段意思是查看对应 pid 倒序前 30 大的内存段。这边可以再一段时间后再跑一次命令看看内存增长情况,或者和正常机器比较可疑的内存段在哪里。

JAVA 线上故障排查完整套路

我们如果确定有可疑的内存端,需要通过 gdb 来分析gdb --batch --pid {pid} -ex “dump memory filename.dump {内存起始地址} {内存起始地址+内存块大小}”

JAVA 线上故障排查完整套路

获取 dump 文件后可用 heaxdump 进行查看hexdump -C filename | less,不过大多数看到的都是二进制乱码。

NMT 是 Java7U40 引入的 HotSpot 新特性,配合 jcmd 命令我们就可以看到具体内存组成了。需要在启动参数中加入 -XX:NativeMemoryTracking=summary 或者 -XX:NativeMemoryTracking=detail,会有略微性能损耗。

一般对于堆外内存缓慢增长直到爆炸的情况来说,可以先设一个基线jcmd pid VM.native_memory baseline。

JAVA 线上故障排查完整套路

然后等放一段时间后再去看看内存增长的情况,通过jcmd pid VM.native_memory detail.diff(summary.diff)做一下 summary 或者 detail 级别的 diff。

JAVA 线上故障排查完整套路

JAVA 线上故障排查完整套路

可以看到 jcmd 分析出来的内存十分详细,包括堆内、线程以及 gc(所以上述其他内存异常其实都可以用 nmt 来分析),这边堆外内存我们重点关注 Internal 的内存增长,如果增长十分明显的话那就是有问题了。

detail 级别的话还会有具体内存段的增长情况,如下图。

JAVA 线上故障排查完整套路

此外在系统层面,我们还可以使用 strace 命令来监控内存分配 strace -f -e “brk,mmap,munmap” -p pid

这边内存分配信息主要包括了 pid 和内存地址。

JAVA 线上故障排查完整套路

不过其实上面那些操作也很难定位到具体的问题点,关键还是要看错误日志栈,找到可疑的对象,搞清楚它的回收机制,然后去分析对应的对象。比如 DirectByteBuffer 分配内存的话,是需要 full GC 或者手动 system.gc 来进行回收的(所以最好不要使用-XX:+DisableExplicitGC)。那么其实我们可以跟踪一下 DirectByteBuffer 对象的内存情况,通过jmap -histo:live pid手动触发 fullGC 来看看堆外内存有没有被回收。如果被回收了,那么大概率是堆外内存本身分配的太小了,通过-XX:MaxDirectMemorySize进行调整。如果没有什么变化,那就要使用 jmap 去分析那些不能被 gc 的对象,以及和 DirectByteBuffer 之间的引用关系了。

GC 问题

=========

堆内内存泄漏总是和 GC 异常相伴。不过 GC 问题不只是和内存问题相关,还有可能引起 CPU 负载、网络问题等系列并发症,只是相对来说和内存联系紧密些,所以我们在此单独总结一下 GC 相关问题。

我们在 CPU 章介绍了使用 jstat 来获取当前 GC 分代变化信息。而更多时候,我们是通过 GC 日志来排查问题的,在启动参数中加上-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps来开启 GC 日志。

常见的 Young GC、Full GC 日志含义在此就不做赘述了。

针对 gc 日志,我们就能大致推断出 youngGC 与 fullGC 是否过于频繁或者耗时过长,从而对症下药。我们下面将对 G1 垃圾收集器来做分析,这边也建议大家使用 G1-XX:+UseG1GC。

youngGC 过频繁

youngGC 频繁一般是短周期小对象较多,先考虑是不是 Eden 区/新生代设置的太小了,看能否通过调整-Xmn、-XX:SurvivorRatio 等参数设置来解决问题。如果参数正常,但是 young gc 频率还是太高,就需要使用 Jmap 和 MAT 对 dump 文件进行进一步排查了。

youngGC 耗时过长

耗时过长问题就要看 GC 日志里耗时耗在哪一块了。以 G1 日志为例,可以关注 Root Scanning、Object Copy、Ref Proc 等阶段。Ref Proc 耗时长,就要注意引用相关的对象。Root Scanning 耗时长,就要注意线程数、跨代引用。Object Copy 则需要关注对象生存周期。而且耗时分析它需要横向比较,就是和其他项目或者正常时间段的耗时比较。比如说图中的 Root Scanning 和正常时间段比增长较多,那就是起的线程太多了。

JAVA 线上故障排查完整套路

触发 fullGC

G1 中更多的还是 mixedGC,但 mixedGC 可以和 youngGC 思路一样去排查。触发 fullGC 了一般都会有问题,G1 会退化使用 Serial 收集器来完成垃圾的清理工作,暂停时长达到秒级别,可以说是半跪了。

fullGC 的原因可能包括以下这些,以及参数调整方面的一些思路:

  • 并发阶段失败:在并发标记阶段,MixGC 之前老年代就被填满了,那么这时候 G1 就会放弃标记周期。这种情况,可能就需要增加堆大小,或者调整并发标记线程数-XX:ConcGCThreads。

  • 晋升失败:在 GC 的时候没有足够的内存供存活/晋升对象使用,所以触发了 Full GC。这时候可以通过-XX:G1ReservePercent来增加预留内存百分比,减少-XX:InitiatingHeapOccupancyPercent来提前启动标记,-XX:ConcGCThreads来增加标记线程数也是可以的。

  • 大对象分配失败:大对象找不到合适的 region 空间进行分配,就会进行 fullGC,这种情况下可以增大内存或者增大-XX:G1HeapRegionSize。

  • 程序主动执行 System.gc():不要随便写就对了。

另外,我们可以在启动参数中配置-XX:HeapDumpPath=/xxx/dump.hprof来 dump fullGC 相关的文件,并通过 jinfo 来进行 gc 前后的 dump

jinfo -flag +HeapDumpBeforeFullGC pid

jinfo -flag +HeapDumpAfterFullGC pid

jinfo -flag +HeapDumpBeforeFullGC pid

jinfo -flag +HeapDumpAfterFullGC pid

这样得到 2 份 dump 文件,对比后主要关注被 gc 掉的问题对象来定位问题。

网络

==

涉及到网络层面的问题一般都比较复杂,场景多,定位难,成为了大多数开发的噩梦,应该是最复杂的了。这里会举一些例子,并从 tcp 层、应用层以及工具的使用等方面进行阐述。

超时

超时错误大部分处在应用层面,所以这块着重理解概念。超时大体可以分为连接超时和读写超时,某些使用连接池的客户端框架还会存在获取连接超时和空闲连接清理超时。

  • 读写超时。readTimeout/writeTimeout,有些框架叫做 so_timeout 或者 socketTimeout,均指的是数据读写超时。注意这边的超时大部分是指逻辑上的超时。soa 的超时指的也是读超时。读写超时一般都只针对客户端设置。

  • 连接超时。connectionTimeout,客户端通常指与服务端建立连接的最大时间。服务端这边 connectionTimeout 就有些五花八门了,Jetty 中表示空闲连接清理时间,Tomcat 则表示连接维持的最大时间。

  • 其他。包括连接获取超时 connectionAcquireTimeout 和空闲连接清理超时 idleConnectionTimeout。多用于使用连接池或队列的客户端或服务端框架。

我们在设置各种超时时间中,需要确认的是尽量保持客户端的超时小于服务端的超时,以保证连接正常结束。

在实际开发中,我们关心最多的应该是接口的读写超时了。

如何设置合理的接口超时是一个问题。如果接口超时设置的过长,那么有可能会过多地占用服务端的 tcp 连接。而如果接口设置的过短,那么接口超时就会非常频繁。

服务端接口明明 rt 降低,但客户端仍然一直超时又是另一个问题。这个问题其实很简单,客户端到服务端的链路包括网络传输、排队以及服务处理等,每一个环节都可能是耗时的原因。

TCP 队列溢出

tcp 队列溢出是个相对底层的错误,它可能会造成超时、rst 等更表层的错误。因此错误也更隐蔽,所以我们单独说一说。

JAVA 线上故障排查完整套路

如上图所示,这里有两个队列:syns queue(半连接队列)、accept queue(全连接队列)。三次握手,在 server 收到 client 的 syn 后,把消息放到 syns queue,回复 syn+ack 给 client,server 收到 client 的 ack,如果这时 accept queue 没满,那就从 syns queue 拿出暂存的信息放入 accept queue 中,否则按 tcp_abort_on_overflow 指示的执行。

tcp_abort_on_overflow 0 表示如果三次握手第三步的时候 accept queue 满了那么 server 扔掉 client 发过来的 ack。tcp_abort_on_overflow 1 则表示第三步的时候如果全连接队列满了,server 发送一个 rst 包给 client,表示废掉这个握手过程和这个连接,意味着日志里可能会有很多connection reset / connection reset by peer。

那么在实际开发中,我们怎么能快速定位到 tcp 队列溢出呢?

netstat 命令,执行 netstat -s | egrep “listen|LISTEN”

JAVA 线上故障排查完整套路

如上图所示,overflowed 表示全连接队列溢出的次数,sockets dropped 表示半连接队列溢出的次数。

ss 命令,执行 ss -lnt

JAVA 线上故障排查完整套路

上面看到 Send-Q 表示第三列的 listen 端口上的全连接队列最大为 5,第一列 Recv-Q 为全连接队列当前使用了多少。

接着我们看看怎么设置全连接、半连接队列大小吧:

全连接队列的大小取决于 min(backlog, somaxconn)。backlog 是在 socket 创建的时候传入的,somaxconn 是一个 os 级别的系统参数。而半连接队列的大小取决于 max(64,

/proc/sys/net/ipv4/tcp_max_syn_backlog)。

在日常开发中,我们往往使用 servlet 容器作为服务端,所以我们有时候也需要关注容器的连接队列大小。在 Tomcat 中 backlog 叫做acceptCount,在 Jetty 里面则是acceptQueueSize。

RST 异常

RST 包表示连接重置,用于关闭一些无用的连接,通常表示异常关闭,区别于四次挥手。

在实际开发中,我们往往会看到connection reset / connection reset by peer错误,这种情况就是 RST 包导致的。

端口不存在

如果像不存在的端口发出建立连接 SYN 请求,那么服务端发现自己并没有这个端口则会直接返回一个 RST 报文,用于中断连接。

主动代替 FIN 终止连接

一般来说,正常的连接关闭都是需要通过 FIN 报文实现,然而我们也可以用 RST 报文来代替 FIN,表示直接终止连接。实际开发中,可设置 SO_LINGER 数值来控制,这种往往是故意的,来跳过 TIMED_WAIT,提供交互效率,不闲就慎用。

客户端或服务端有一边发生了异常,该方向对端发送 RST 以告知关闭连接

我们上面讲的 tcp 队列溢出发送 RST 包其实也是属于这一种。这种往往是由于某些原因,一方无法再能正常处理请求连接了(比如程序崩了,队列满了),从而告知另一方关闭连接。

接收到的 TCP 报文不在已知的 TCP 连接内

比如,一方机器由于网络实在太差 TCP 报文失踪了,另一方关闭了该连接,然后过了许久收到了之前失踪的 TCP 报文,但由于对应的 TCP 连接已不存在,那么会直接发一个 RST 包以便开启新的连接。

一方长期未收到另一方的确认报文,在一定时间或重传次数后发出 RST 报文

这种大多也和网络环境相关了,网络环境差可能会导致更多的 RST 报文。

之前说过 RST 报文多会导致程序报错,在一个已关闭的连接上读操作会报connection reset,而在一个已关闭的连接上写操作则会报connection reset by peer。通常我们可能还会看到broken pipe错误,这是管道层面的错误,表示对已关闭的管道进行读写,往往是在收到 RST,报出connection reset错后继续读写数据报的错,这个在 glibc 源码注释中也有介绍。

我们在排查故障时候怎么确定有 RST 包的存在呢?当然是使用 tcpdump 命令进行抓包,并使用 wireshark 进行简单分析了。tcpdump -i en0 tcp -w xxx.cap,en0 表示监听的网卡。

JAVA 线上故障排查完整套路

接下来我们通过 wireshark 打开抓到的包,可能就能看到如下图所示,红色的就表示 RST 包了。

JAVA 线上故障排查完整套路

TIME_WAIT 和 CLOSE_WAIT

TIME_WAIT 和 CLOSE_WAIT 是啥意思相信大家都知道。

在线上时,我们可以直接用命令netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'来查看 time-wait 和 close_wait 的数量

用 ss 命令会更快ss -ant | awk ‘{++S[$1]} END {for(a in S) print a, S[a]}’

JAVA 线上故障排查完整套路

TIME_WAIT

time_wait 的存在一是为了丢失的数据包被后面连接复用,二是为了在 2MSL 的时间范围内正常关闭连接。它的存在其实会大大减少 RST 包的出现。

过多的 time_wait 在短连接频繁的场景比较容易出现。这种情况可以在服务端做一些内核参数调优:

#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭

net.ipv4.tcp_tw_reuse = 1

#表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭

net.ipv4.tcp_tw_recycle = 1

#表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭

net.ipv4.tcp_tw_reuse = 1

最后

俗话说,好学者临池学书,不过网络时代,对于大多数的我们来说,我倒是觉得学习意识的觉醒很重要,这是开始学习的转折点,比如看到对自己方向发展有用的信息,先收藏一波是一波,比如如果你觉得我这篇文章ok,先点赞收藏一波。这样,等真的沉下心来学习,不至于被找资料分散了心神。慢慢来,先从点赞收藏做起,加油吧!

另外,给大家安排了一波学习面试资料:

image

image

以上就是本文的全部内容,希望对大家的面试有所帮助,祝大家早日升职加薪迎娶白富美走上人生巅峰!

加入社区:https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0

net.ipv4.tcp_tw_reuse = 1

最后

俗话说,好学者临池学书,不过网络时代,对于大多数的我们来说,我倒是觉得学习意识的觉醒很重要,这是开始学习的转折点,比如看到对自己方向发展有用的信息,先收藏一波是一波,比如如果你觉得我这篇文章ok,先点赞收藏一波。这样,等真的沉下心来学习,不至于被找资料分散了心神。慢慢来,先从点赞收藏做起,加油吧!

另外,给大家安排了一波学习面试资料:

[外链图片转存中…(img-yBhcJKON-1725472145137)]

[外链图片转存中…(img-yrik6Dly-1725472145138)]

以上就是本文的全部内容,希望对大家的面试有所帮助,祝大家早日升职加薪迎娶白富美走上人生巅峰!

加入社区:https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0

;