运动规划API
在 MoveIt 中,使用插件基础结构加载运动规划器。这允许 MoveIt 在运行时加载运动规划器。在此示例中,我们将运行执行此操作所需的C++代码。
运行示例
打开两个终端。在第一个终端中,启动 RViz 并等待所有内容完成加载:
ros2 launch moveit2_tutorials move_group.launch.py
在第二个终端中,运行launch文件
ros2 launch moveit2_tutorials motion_planning_api_tutorial.launch.py
注:本教程使用 RvizVisualToolsGui 面板逐步完成演示。要将此面板添加到 RViz,请按照可视化教程中的说明进行操作。
片刻之后,RViz 窗口应会出现,并且看起来与此页顶部的窗口类似。要继续完成每个演示步骤,请按屏幕底部 RvizVisualToolsGui 面板中的“下一步”按钮,或在屏幕顶部的“Tools”面板中选择“Key Tool”,然后在 RViz 处于活动状态时按键盘上的 N 键。
期望输出
在RViz中我们最终应该能看到四条轨迹被播放
- 机械臂移动到第一个姿势目标,
- 机器人将其手臂移动到关节目标,
- 机械臂移回原始姿势目标,
- 机械臂移动到新的姿势目标,同时保持末端执行器水平。
完整代码
开始
设置以开始使用规划器非常简单。规划器在MoveIt中设置为插件,您可以使用ROS pluginlib接口加载要使用的任何规划器。在加载规划器之前,我们需要两个对象,一个是 RobotModel,另一个是 PlanningScene。我们将首先实例化一个RobotModelLoader对象,该对象将在ROS参数服务器上查找机器人描述,并构建一个RobotModel供我们使用。
const std::string PLANNING_GROUP = "panda_arm";
robot_model_loader::RobotModelLoader robot_model_loader(motion_planning_api_tutorial_node, "robot_description");
const moveit::core::RobotModelPtr& robot_model = robot_model_loader.getModel();
/* Create a RobotState and JointModelGroup to keep track of the current robot pose and planning group*/
moveit::core::RobotStatePtr robot_state(new moveit::core::RobotState(robot_model));
const moveit::core::JointModelGroup* joint_model_group = robot_state->getJointModelGroup(PLANNING_GROUP);
使用RobotModel,我们可以构建一个维护世界状态(包括机器人)的PlanningScene。
planning_scene::PlanningScenePtr planning_scene(new planning_scene::PlanningScene(robot_model));
配置有效的机器人状态
planning_scene->getCurrentStateNonConst().setToDefaultValues(joint_model_group, "ready");
现在,我们将构造一个加载程序来按名称加载规划器。请注意,我们在这里使用的是 ROS pluginlib 库。
std::unique_ptr<pluginlib::ClassLoader<planning_interface::PlannerManager>> planner_plugin_loader;
planning_interface::PlannerManagerPtr planner_instance;
std::string planner_plugin_name;
我们将从ROS参数服务器获取要加载的规划插件的名称,然后加载规划器以确保捕获所有异常。
if (!motion_planning_api_tutorial_node->get_parameter("planning_plugin", planner_plugin_name))
RCLCPP_FATAL(LOGGER, "Could not find planner plugin name");
try
{
planner_plugin_loader.reset(new pluginlib::ClassLoader<planning_interface::PlannerManager>(
"moveit_core", "planning_interface::PlannerManager"));
}
catch (pluginlib::PluginlibException& ex)
{
RCLCPP_FATAL(LOGGER, "Exception while creating planning plugin loader %s", ex.what());
}
try
{
planner_instance.reset(planner_plugin_loader->createUnmanagedInstance(planner_plugin_name));
if (!planner_instance->initialize(robot_model, motion_planning_api_tutorial_node,
motion_planning_api_tutorial_node->get_namespace()))
RCLCPP_FATAL(LOGGER, "Could not initialize planner instance");
RCLCPP_INFO(LOGGER, "Using planning interface '%s'", planner_instance->getDescription().c_str());
}
catch (pluginlib::PluginlibException& ex)
{
const std::vector<std::string>& classes = planner_plugin_loader->getDeclaredClasses();
std::stringstream ss;
for (const auto& cls : classes)
ss << cls << " ";
RCLCPP_ERROR(LOGGER, "Exception while loading planner '%s': %s\nAvailable plugins: %s", planner_plugin_name.c_str(),
ex.what(), ss.str().c_str());
}
moveit::planning_interface::MoveGroupInterface move_group(motion_planning_api_tutorial_node, PLANNING_GROUP);
可视化
MoveItVisualTools功能包提供了许多功能,用于在RViz中可视化对象,机器人和轨迹,以及调试工具,例如脚本的分步内省。
namespace rvt = rviz_visual_tools;
moveit_visual_tools::MoveItVisualTools visual_tools(motion_planning_api_tutorial_node, "panda_link0",
"move_group_tutorial", move_group.getRobotModel());
visual_tools.enableBatchPublishing();
visual_tools.deleteAllMarkers(); // clear all old markers
visual_tools.trigger();
/* Remote control is an introspection tool that allows users to step through a high level script
via buttons and keyboard shortcuts in RViz */
visual_tools.loadRemoteControl();
/* RViz provides many types of markers, in this demo we will use text, cylinders, and spheres*/
Eigen::Isometry3d text_pose = Eigen::Isometry3d::Identity();
text_pose.translation().z() = 1.75;
visual_tools.publishText(text_pose, "Motion Planning API Demo", rvt::WHITE, rvt::XLARGE);
/* Batch publishing is used to reduce the number of messages being sent to RViz for large visualizations */
visual_tools.trigger();
/* We can also use visual_tools to wait for user input */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to start the demo");
目标姿态
现在,我们将为 Panda 臂创建一个运动规划请求,指定末端执行器的所需姿势作为输入。
visual_tools.trigger();
planning_interface::MotionPlanRequest req;
planning_interface::MotionPlanResponse res;
geometry_msgs::msg::PoseStamped pose;
pose.header.frame_id = "panda_link0";
pose.pose.position.x = 0.3;
pose.pose.position.y = 0.4;
pose.pose.position.z = 0.75;
pose.pose.orientation.w = 1.0;
在位置上指定误差范围为 0.01 m,在方向上误差范围为 0.01 弧度
std::vector<double> tolerance_pose(3, 0.01);
std::vector<double> tolerance_angle(3, 0.01);
我们将使用kinematic_constraints包中提供的帮助器函数将请求创建为约束。
moveit_msgs::msg::Constraints pose_goal =
kinematic_constraints::constructGoalConstraints("panda_link8", pose, tolerance_pose, tolerance_angle);
req.group_name = PLANNING_GROUP;
req.goal_constraints.push_back(pose_goal);
现在,我们构建一个规划上下文,用于封装场景、请求和响应。我们使用此规划上下文调用规划器
可视化结果
std::shared_ptr<rclcpp::Publisher<moveit_msgs::msg::DisplayTrajectory>> display_publisher =
motion_planning_api_tutorial_node->create_publisher<moveit_msgs::msg::DisplayTrajectory>("/display_planned_path",
1);
moveit_msgs::msg::DisplayTrajectory display_trajectory;
/* Visualize the trajectory */
moveit_msgs::msg::MotionPlanResponse response;
res.getMessage(response);
display_trajectory.trajectory_start = response.trajectory_start;
display_trajectory.trajectory.push_back(response.trajectory);
visual_tools.publishTrajectoryLine(display_trajectory.trajectory.back(), joint_model_group);
visual_tools.trigger();
display_publisher->publish(display_trajectory);
/* Set the state in the planning scene to the final state of the last plan */
robot_state->setJointGroupPositions(joint_model_group, response.trajectory.joint_trajectory.points.back().positions);
planning_scene->setCurrentState(*robot_state.get());
显示目标姿态
visual_tools.publishAxisLabeled(pose.pose, "goal_1");
visual_tools.publishText(text_pose, "Pose Goal (1)", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
/* We can also use visual_tools to wait for user input */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
关节空间姿态
现在设置一个关机空间目标
moveit::core::RobotState goal_state(robot_model);
std::vector<double> joint_values = { -1.0, 0.7, 0.7, -1.5, -0.7, 2.0, 0.0 };
goal_state.setJointGroupPositions(joint_model_group, joint_values);
moveit_msgs::msg::Constraints joint_goal =
kinematic_constraints::constructGoalConstraints(goal_state, joint_model_group);
req.goal_constraints.clear();
req.goal_constraints.push_back(joint_goal);
唤起规划器并可视化轨迹
/* Re-construct the planning context */
context = planner_instance->getPlanningContext(planning_scene, req, res.error_code_);
/* Call the Planner */
context->solve(res);
/* Check that the planning was successful */
if (res.error_code_.val != res.error_code_.SUCCESS)
{
RCLCPP_ERROR(LOGGER, "Could not compute plan successfully");
return 0;
}
/* Visualize the trajectory */
res.getMessage(response);
display_trajectory.trajectory.push_back(response.trajectory);
/* Now you should see two planned trajectories in series*/
visual_tools.publishTrajectoryLine(display_trajectory.trajectory.back(), joint_model_group);
visual_tools.trigger();
display_publisher->publish(display_trajectory);
/* We will add more goals. But first, set the state in the planning
scene to the final state of the last plan */
robot_state->setJointGroupPositions(joint_model_group, response.trajectory.joint_trajectory.points.back().positions);
planning_scene->setCurrentState(*robot_state.get());
显示目标姿态
visual_tools.publishAxisLabeled(pose.pose, "goal_2");
visual_tools.publishText(text_pose, "Joint Space Goal (2)", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
/* Wait for user input */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
/* Now, we go back to the first goal to prepare for orientation constrained planning */
req.goal_constraints.clear();
req.goal_constraints.push_back(pose_goal);
context = planner_instance->getPlanningContext(planning_scene, req, res.error_code_);
context->solve(res);
res.getMessage(response);
display_trajectory.trajectory.push_back(response.trajectory);
visual_tools.publishTrajectoryLine(display_trajectory.trajectory.back(), joint_model_group);
visual_tools.trigger();
display_publisher->publish(display_trajectory);
/* Set the state in the planning scene to the final state of the last plan */
robot_state->setJointGroupPositions(joint_model_group, response.trajectory.joint_trajectory.points.back().positions);
planning_scene->setCurrentState(*robot_state.get());
显示目标姿态
visual_tools.trigger();
/* Wait for user input */
visual_tools.prompt("Press 'next' in the RvizVisualToolsGui window to continue the demo");
添加路径约束
让我们再次添加一个新的目标姿态。这次我们也将为运动添加一个路径约束
/* Let's create a new pose goal */
pose.pose.position.x = 0.32;
pose.pose.position.y = -0.25;
pose.pose.position.z = 0.65;
pose.pose.orientation.w = 1.0;
moveit_msgs::msg::Constraints pose_goal_2 =
kinematic_constraints::constructGoalConstraints("panda_link8", pose, tolerance_pose, tolerance_angle);
/* Now, let's try to move to this new pose goal*/
req.goal_constraints.clear();
req.goal_constraints.push_back(pose_goal_2);
/* But, let's impose a path constraint on the motion.
Here, we are asking for the end-effector to stay level*/
geometry_msgs::msg::QuaternionStamped quaternion;
quaternion.header.frame_id = "panda_link0";
req.path_constraints = kinematic_constraints::constructGoalConstraints("panda_link8", quaternion);
施加路径约束要求规划器在末端执行器(机器人的工作空间)的可能位置空间中进行推理,因此,我们还需要为允许的计划量指定一个边界;注意:默认绑定由 WorkspaceBounds 请求适配器(OMPL 管道的一部分,但在此示例中未使用)自动填充。我们使用的边界绝对包括手臂的可触及空间。这很好,因为在规划机械臂时,不会在此体积中进行采样;边界仅用于确定采样的配置是否有效。
req.workspace_parameters.min_corner.x = req.workspace_parameters.min_corner.y =
req.workspace_parameters.min_corner.z = -2.0;
req.workspace_parameters.max_corner.x = req.workspace_parameters.max_corner.y =
req.workspace_parameters.max_corner.z = 2.0;
唤起规划器并可视化目前为止创建的所有的规划
context = planner_instance->getPlanningContext(planning_scene, req, res.error_code_);
context->solve(res);
res.getMessage(response);
display_trajectory.trajectory.push_back(response.trajectory);
visual_tools.publishTrajectoryLine(display_trajectory.trajectory.back(), joint_model_group);
visual_tools.trigger();
display_publisher->publish(display_trajectory);
/* Set the state in the planning scene to the final state of the last plan */
robot_state->setJointGroupPositions(joint_model_group, response.trajectory.joint_trajectory.points.back().positions);
planning_scene->setCurrentState(*robot_state.get());
显示目标姿态
visual_tools.publishAxisLabeled(pose.pose, "goal_3");
visual_tools.publishText(text_pose, "Orientation Constrained Motion Plan (3)", rvt::WHITE, rvt::XLARGE);
visual_tools.trigger();
launch文件
整个启动文件在此处GitHub上。本教程中的所有代码都可以从moveit_tutorials包进行编译和运行。