Bootstrap

PyTorch快速入门教程【小土堆】之损失函数与反向传播

视频地址损失函数与反向传播_哔哩哔哩_bilibili

Loss两个作用

1,计算实际输出和目标之间的差距

2. 为我们更新输出提供一定的依据(反向传播)

import torch
from torch import nn
from torch.nn import L1Loss

inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)

inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))

loss = L1Loss(reduction='sum')
result = loss(inputs, targets)

loss_mse = nn.MSELoss()
result_mse = loss_mse(inputs, targets)

print(result)
print(result_mse)


x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(x, y)
print (result_cross)

上方代码举例了几种loss函数的使用

下方代码是loss函数在模型中如何使用

import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model1(x)
        return x


loss = nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
    imgs, targets = data
    outputs = tudui(imgs)
    result_loss = loss(outputs, targets)
    result_loss.backward()

;