禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
文章目录
介绍
朴素贝叶斯分类算法(Naive Bayes Classifier)是一种基于贝叶斯定理的简单概率分类器。它的“朴素”假设是特征之间相互独立,即每个特征对于发生的概率是独立的,不考虑特征之间的相互作用。
算法原理:
- 贝叶斯定理:朴素贝叶斯分类器基于贝叶斯定理,该定理描述了给定某些先验知识下事件发生的概率。在分类问题中,我们想要计算的是给定观测数据属于某个类别的概率。
- 特征条件独立性假设:朴素贝叶斯分类器假设特征之间相互独立。
- 概率计算:使用贝叶斯定理,我们可以计算后验概率。
- 先验概率