Bootstrap

控制系统状态空间表达式的解(2)——计算矩阵指数函数的常用方法

方法一

根据矩阵指数函数的定义直接计算:
e A t = d e f I + A t + 1 2 ! A 2 t 2 + . . . = ∑ k = 0 ∞ 1 k ! A k t k e^{At}\overset{def}{=}I+At+\frac{1}{2!}A^{2}t^{2}+...=\sum_{k=0}^{\infty}\frac{1}{k!}A^{k}t{^k} eAt=defI+At+2!1A2t2+...=k=0k!1Aktk

(用定义计算,很少用到8)

方法二

A A A阵化为对角标准型约当标准型求解

1. A A A的特征值不存在重根
A A A的特征值 λ 1 , λ 2 , . . . , λ n \lambda_{1},\lambda_{2},...,\lambda_{n} λ1,λ2,...,λn不存在重根,则在求出使 A A A阵实现对角化
T − 1 A T = [ λ 1 λ 2 ⋱ λ n ] T^{-1}AT= \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T1AT=λ1λ2λn
的变换阵 T − 1 T^{-1} T1 T T T后,即有指数函数矩阵:
e A t = T [ e λ 1 t e λ 2 t ⋱ e λ n t ] T − 1 e^{At}= T\begin{bmatrix} e^{\lambda_{1}t} & & & \\ & e^{\lambda_{2}t} & & \\ & & \ddots & \\ & & & e^{\lambda_{n}t} \end{bmatrix}T^{-1} eAt=Teλ1teλ2teλntT1
证明:
由 : T − 1 A T = [ λ 1 λ 2 ⋱ λ n ] 可 得 : A = T [ λ 1 λ 2 ⋱ λ n ] T − 1 由: T^{-1}AT= \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} \qquad可得: A= T\begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1} :T1AT=λ1λ2λn:A=Tλ1λ2λnT1
而:
e A t = ∑ k = 0 ∞ 1 k ! A k t k = ∑ k = 0 ∞ 1 k ! ( T [ λ 1 λ 2 ⋱ λ n ] T − 1 ) k t k \begin{aligned} e^{At}&=\sum_{k=0}^{\infty}\frac{1}{k!}A^{k}t{^k}\\ &=\sum_{k=0}^{\infty}\frac{1}{k!} \left ( T \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1} \right )^{k} t^{k} \end{aligned} eAt=k=0k!1Aktk=k=0k!1Tλ1λ2λnT1ktk

接下来,先考虑 k = 2 k=2 k=2的情况:
( T [ λ 1 λ 2 ⋱ λ n ] T − 1 ) 2 = T [ λ 1 λ 2 ⋱ λ n ] T − 1 T [ λ 1 λ 2 ⋱ λ n ] T − 1 = T [ λ 1 λ 2 ⋱ λ n ] 2 T − 1 \begin{aligned} \left ( T \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1} \right )^{2} &= T\begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1} T\begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1}\\ &= T\begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix}^{2} T^{-1} \end{aligned} Tλ1λ2λnT12=Tλ1λ2λnT1Tλ1λ2λnT1=Tλ1λ2λn2T1
将结果带入上式中有
e A t = ∑ k = 0 ∞ 1 k ! A k t k = ∑ k = 0 ∞ 1 k ! ( [ λ 1 λ 2 ⋱ λ n ] T − 1 ) k t k = ∑ k = 0 ∞ 1 k ! T [ λ 1 λ 2 ⋱ λ n ] k T − 1 t k \begin{aligned} e^{At}&=\sum_{k=0}^{\infty}\frac{1}{k!}A^{k}t{^k}\\ &=\sum_{k=0}^{\infty}\frac{1}{k!} \left ( \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} T^{-1} \right )^{k} t^{k}\\ &=\sum_{k=0}^{\infty}\frac{1}{k!} T \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} ^{k} T^{-1} t^{k} \end{aligned} eAt=k=0k!1Aktk=k=0k!1λ1λ2λnT1ktk=k=0k!1Tλ1λ2λnkT1tk
1 k ! \frac{1}{k!} k!1 t k t^{k} tk都是常数,将其乘到对角阵中去
= T [ ∑ k = 0 ∞ 1 k ! λ 1 k t k ∑ k = 0 ∞ 1 k ! λ 2 k t k ⋱ ∑ k = 0 ∞ 1 k ! λ n k t k ] T − 1 = T [ e λ 1 t e λ 2 t ⋱ e λ k t ] T − 1 \begin{aligned} &=T \begin{bmatrix} \sum_{k=0}^{\infty}\frac{1}{k!}\lambda_{1}^{k}t^{k}& & & \\ & \sum_{k=0}^{\infty}\frac{1}{k!}\lambda_{2}^{k}t^{k}& & \\ & & \ddots & \\ & & & \sum_{k=0}^{\infty}\frac{1}{k!}\lambda_{n}^{k}t^{k} \end{bmatrix} T^{-1}\\ &=T \begin{bmatrix} e^{\lambda_{1}t}& & & \\ &e^{\lambda_{2}t} & & \\ & & \ddots & \\ & & &e^{\lambda_{k}t} \end{bmatrix} T^{-1}\\ \end{aligned} =Tk=0k!1λ1ktkk=0k!1λ2ktkk=0k!1λnktkT1=Teλ1teλ2teλktT1
证毕

2. A A A的特征值存在重根时
暂时略


方法三

拉氏变换法:
e A t = L − 1 [ ( s I − A ) − 1 ] e^{At}=L^{-1}[(sI-A)^{-1}] eAt=L1[(sIA)1]
证明:
由矩阵指数函数的定义:
e A t = I + A t + 1 2 ! A 2 t 2 + . . . = ∑ k = 0 ∞ 1 k ! A k t k e^{At}=I+At+\frac{1}{2!}A^{2}t^{2}+...=\sum_{k=0}^{\infty}\frac{1}{k!}A^{k}t{^k} eAt=I+At+2!1A2t2+...=k=0k!1Aktk
两边取拉氏变换:

根据:
L ( t k k ! ) = 1 s k + 1 L(\frac{t^{k}}{k!})=\frac{1}{s^{k+1}} L(k!tk)=sk+11

L ( e A t ) = 1 s I + 1 s 2 A + 1 s 3 A 2 + . . . = ∑ k = 0 ∞ 1 s k + 1 A k = s − 1 ∑ k = 0 + ∞ ( s − 1 A ) k \begin{aligned} L(e^{At})&=\frac{1}{s}I+\frac{1}{s^2}A+\frac{1}{s^3}A^2+...\\ &=\sum_{k=0}^{\infty}\frac{1}{s^{k+1}}A^{k}\\ &=s^{-1}\sum_{k=0}^{+\infty}(s^{-1}A)^k \end{aligned} L(eAt)=s1I+s21A+s31A2+...=k=0sk+11Ak=s1k=0+(s1A)k

根据:
1 + x + x 2 + . . . + x k + . . . = ∑ k = 0 + ∞ x k = 1 1 − x = ( 1 − x ) − 1 \begin{aligned} 1+x+x^2+...+x^k+...&=\sum_{k=0}^{+\infty}x^k\\ &=\frac{1}{1-x}=(1-x)^{-1} \end{aligned} 1+x+x2+...+xk+...=k=0+xk=1x1=(1x)1

有:
L ( e A t ) = s − 1 ∑ k = 0 + ∞ ( s − 1 A ) k = s − 1 ( I − s − 1 A ) − 1 = ( s I − A ) − 1 \begin{aligned} L(e^{At})&=s^{-1}\sum_{k=0}^{+\infty}(s^{-1}A)^k\\ &=s^{-1}(I-s^{-1}A)^{-1}\\ &=(sI-A)^{-1} \end{aligned} L(eAt)=s1k=0+(s1A)k=s1(Is1A)1=(sIA)1
两边取拉式反变换:
e A t = L − 1 [ ( s I − A ) − 1 ] e^{At}=L^{-1}[(sI-A)^{-1}] eAt=L1[(sIA)1]
证毕


凯莱-哈米尔顿定理:

A ∈ R x × x A\in R^{x \times x} ARx×x,其特征多项式为:
D ( λ ) = ∣ λ I − A ∣ = λ n + a n − 1 λ n − 1 + . . . + a 1 λ + a 0 = 0 \begin{aligned} D(\lambda)&=|\lambda I-A|\\ &=\lambda^n+a_{n-1}\lambda^{n-1}+...+a_{1}\lambda+a_{0}\\ &=0\\ \end{aligned} D(λ)=λIA=λn+an1λn1+...+a1λ+a0=0
则矩阵A必须满足其特征多项式,即:
A n + a n − 1 A n − 1 + . . . + a 1 A + a 0 I = 0 A^n+a_{n-1}A^{n-1}+...+a_1A+a_0I=0 An+an1An1+...+a1A+a0I=0

证明略
;