14.代码随想录算法训练营第十四天|226. 翻转二叉树 - 力扣(LeetCode),101.对称二叉树 (优先掌握递归),104. 二叉树的最大深度 - 力扣(LeetCode),111.二叉树的最小深度,[自学打卡记录]
226. 翻转二叉树 - 力扣(LeetCode)
给你一棵二叉树的根节点 root
,翻转这棵二叉树,并返回其根节点。
示例 1:
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3]
输出:[2,3,1]
示例 3:
输入:root = []
输出:[]
提示:
- 树中节点数目范围在
[0, 100]
内 -100 <= Node.val <= 100
思想:无论哪一种遍历方式,只有遍历到的节点充当根节点的时候才能够进行处理。
解法一前序遍历:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
swap(root);
invertTree(root.left);
invertTree(root.right);
return root;
}
private void swap(TreeNode root){
TreeNode tmp = root.left;
root.left = root.right;
root.right = tmp;
}
}
解法二后序遍历:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
invertTree(root.left);
invertTree(root.right);
swap(root);
return root;
}
private void swap(TreeNode root){
TreeNode tmp = root.left;
root.left = root.right;
root.right = tmp;
}
}
解法三层次遍历:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if(root == null){
return null;
}
ArrayDeque<TreeNode> deque = new ArrayDeque<>();
deque.offer(root);
while(!deque.isEmpty()){
int size = deque.size();
while(size-- > 0){
TreeNode node = deque.poll();
swap(node);
if(node.left != null){
deque.offer(node.left);
}
if(node.right != null){
deque.offer(node.right);
}
}
}
return root;
}
public void swap(TreeNode node){
TreeNode temp = node.left;
node.left = node.right;
node.right = temp;
}
}
101. 对称二叉树 - 力扣(LeetCode)
给你一个二叉树的根节点 root
, 检查它是否轴对称。
示例 1:
输入:root = [1,2,2,3,4,4,3]
输出:true
示例 2:
输入:root = [1,2,2,null,3,null,3]
输出:false
思想:需要收集孩子信息的话就需要用后序算法。(递归法)
- 判断递归函数的参数,因为要比较的是左右两棵子树,所以参数是左子树节点和右子树节点;
- 确定终止条件:
- 左节点为空,右节点不为空,不对称
- 左不空,右空,不对称
- 左右空,对称
- 左右都不为空,节点值不相同就return false
- 左右都不为空,节点值相同:
- 继续处理
- 继续处理:
- 比较外侧节点,左子树的左孩子,右子树的右孩子
- 比较内侧节点,左子树的有孩子,右子树的左孩子
- 如果左右都对称就返回true,有一侧不对称就返回false
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null){
return true;
}
return compare(root.left,root.right);
}
boolean compare(TreeNode left,TreeNode right){
if(left!=null && right==null){
return false;
}else if(left==null && right!=null){
return false;
}else if(left==null && right==null){
return true;
}else if(left.val != right.val){
return false;
}else{
boolean inside = compare(left.right,right.left);
boolean outside = compare(left.left,right.right);
return inside && outside;
}
}
}
104. 二叉树的最大深度 - 力扣(LeetCode)
给定一个二叉树 root
,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:3
示例 2:
输入:root = [1,null,2]
输出:2
提示:
- 树中节点的数量在
[0, 104]
区间内。 -100 <= Node.val <= 100
思想:根节点的高度就是我们这棵树的最大深度
- 返回值是int
- 参数是根节点
- 终止条件:node==null return 0;
- 用后序遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if(root == null){
return 0;
}
int leftHight = maxDepth(root.left);
int rightHight = maxDepth(root.right);
return Math.max(leftHight,rightHight)+1;
}
}
111. 二叉树的最小深度 - 力扣(LeetCode)
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
**说明:**叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6]
输出:5
提示:
- 树中节点数的范围在
[0, 105]
内 -1000 <= Node.val <= 1000
思想:请根节点的最小高度
- 终止条件 if(node == null) return 0;
- 取左右子树的高度
- 为什么不能return min(left,right)—和最大深度的区别
- 因为这种把左子树为空,右子树不为空的情况考虑进去了(这个时候应该只考虑右子树的最小高度)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
if(root == null){
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if(root.left == null && root.right != null){
return rightDepth+1;
}
if(root.left != null && root.right == null){
return leftDepth+1;
}
return Math.min(leftDepth,rightDepth)+1;
}
}