当pd.Dataframe中含有NaN值时,用python连接mysql数据库,直接replace进入表会报错
比如有如下dataFrame
replace会报错:pymysql.err.InternalError: (1054, “Unknown column ‘nan’ in ‘field list’”)
解决办法:
将DataFrame中的NaN值填充为None后再replace
df = df.where(df.notnull(),None)
完整代码如下:
import pymysql
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
df = pd.DataFrame([['Tom',10],['Jerry',12],['Elsa',14],['Anna',16]],columns=['name','age'])
df=df.append([{'name':'Olaf'}]).reset_index(drop=True)
print(df)
df = df.where(df.notnull(),None)
#插入数据库
table_name = 'test_table'
data = df.values.tolist()
column_tuple = str(tuple(df.columns)).replace("'","")
sql_replace = """replace into {0} {1} values ({2} %s);""".format(table_name,column_tuple,'%s,'*(len(df.columns)-1))
conn = pymysql.connect(host="127.0.0.1",
port=3306,
user="user_name",
passwd="password",
db="dbname")
cursor = conn.cursor()
cursor.executemany(sql_replace,data)
conn.commit()
cursor.close()
conn.close()
数据库中显示: