异常
org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator$OffsetCommitResponseHandler.handle(ConsumerCoordinator.java:775)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator$OffsetCommitResponseHandler.handle(ConsumerCoordinator.java:726)
异常的主要信息:
a) CommitFailedException
b) Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
其实如果我们对其中的参数,或是对消费的机制比较了解,这个问题就很好解决。当我看到这个异常,我很开心,因为我知道我能通过此异常了解一下Kafka Consumer 消费消息的大致过程。心态是好的~~~
其实现在看这个异常是说:该Consumer不能提交offset了,因为它已经出局了,是因为你的处理小时时间长于你要报告给server的时间。同时还告诉我们怎么处理:要么增加超时时间,要么减少每次poll回来的消息个数。
主要问题在于,何为session timeout?maximum size of batches?poll(timeout)中timeout什么意思?
处理过程
a) 找官网doc
版本:1.1.0
有效信息:
换成通俗易懂的人话:
下边这个例子如果理解不上,请通读全文后,再回来理解一下笔者的意思
------------------------------------分割线------------------------------------
------------------------------------分割线------------------------------------
通过上边的例子,我们大致清楚了max.poll.interval.ms?maximum size of batches?
max.poll.interval.ms:消费者最大心跳时间间隔
maximum size of batches:消费者每次获取消息的个数
什么时候发送心跳呢?是poll()方法被调用发送心跳吗?那poll(timeout)中timeout是什么意思呢?
官网对poll(timeout)中timeout的解释如下:
Parameters:
timeout - The time, in milliseconds, spent waiting in poll if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative.
这个我费了很大力气都没有给它翻译成人话……
怎么办?看源码?大致看了下,但是水平有限。。。真的不知道什么时候发送心跳。那就剩下最后一招了(杀手锏)---写例子验证
验证
1、producer
public class ProducerTest {
@Test
public void TestPro() {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<String, String>(props);
for (int i = 0; i < 30; i++)
producer.send(new ProducerRecord<String, String>("user_behavior", Integer.toString(i), "hello-"+i));
producer.close();
}
}
2、consumer
public class ConsumerTest {
@Test
public void TestCon() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "earliest");
props.put("max.poll.records", 5);
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList("user_behavior"));
int i = 0;
while (true) {
ConsumerRecords<String, String> records = consumer.poll(3000);
System.out.println("polls out: " + ++i + "time: " + KafkaHelper.timestmp2date(System.currentTimeMillis()));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("time = %s, partition = %s, offset = %d, key = %s, value = %s%n",
KafkaHelper.timestmp2date(record.timestamp()),
record.partition(),
record.offset(),
record.key(),
record.value());
}
consumer.commitSync();
}
}
}
a)测试poll中的参数作用
直接启动Consumer打印结果:
polls out: 1time: 2018-06-13 15:25:19
polls out: 2time: 2018-06-13 15:25:22
polls out: 3time: 2018-06-13 15:25:25
polls out: 4time: 2018-06-13 15:25:28
一开始我错误以为:这个timeout是Consumer每次拉去消息的时间间隔
但我启动了Producer后,打印结果:
polls out: 1time: 2018-06-13 15:27:40
polls out: 2time: 2018-06-13 15:27:43
polls out: 3time: 2018-06-13 15:27:46
polls out: 4time: 2018-06-13 15:27:49
polls out: 5time: 2018-06-13 15:27:52
time = 2018-06-13 15:27:52, partition = 0, offset = 503, key = 1, value = hello-1
time = 2018-06-13 15:27:52, partition = 0, offset = 504, key = 5, value = hello-5
polls out: 6time: 2018-06-13 15:27:52
time = 2018-06-13 15:27:52, partition = 1, offset = 157, key = 4, value = hello-4
time = 2018-06-13 15:27:52, partition = 2, offset = 129, key = 0, value = hello-0
time = 2018-06-13 15:27:52, partition = 2, offset = 130, key = 2, value = hello-2
time = 2018-06-13 15:27:52, partition = 2, offset = 131, key = 3, value = hello-3
polls out: 7time: 2018-06-13 15:27:55
polls out: 8time: 2018-06-13 15:27:58
polls out: 9time: 2018-06-13 15:28:01
polls out: 10time: 2018-06-13 15:28:04
由此可见,第5次和第6次调用poll方法的时间相同。
至此,结合官网的描述对poll(timeout) 的timeout参数认识如下
如果消息队列中没有消息,等待timeout毫秒后,调用poll()方法。如果队列中有消息,立即消费消息,每次消费的消息的多少可以通过max.poll.records配置。
b)测试max.poll.interval.ms
public class ConsumerTest {
@Test
public void TestCon() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "earliest");
props.put("max.poll.records", 5);
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList("user_behavior"));
int i = 0;
while (true) {
ConsumerRecords<String, String> records = consumer.poll(3000);
System.out.println("polls out: " + ++i + "time: " + KafkaHelper.timestmp2date(System.currentTimeMillis()));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("time = %s, partition = %s, offset = %d, key = %s, value = %s%n",
KafkaHelper.timestmp2date(record.timestamp()),
record.partition(),
record.offset(),
record.key(),
record.value());
}
consumer.commitSync();
}
}
}
启动Consumer、Producer运行正常不报错
polls out: 1time: 2018-06-13 15:53:07
polls out: 2time: 2018-06-13 15:53:07
time = 2018-06-13 15:53:07, partition = 1, offset = 158, key = 4, value = hello-4
time = 2018-06-13 15:53:07, partition = 0, offset = 505, key = 1, value = hello-1
time = 2018-06-13 15:53:07, partition = 0, offset = 506, key = 5, value = hello-5
time = 2018-06-13 15:53:07, partition = 2, offset = 132, key = 0, value = hello-0
time = 2018-06-13 15:53:07, partition = 2, offset = 133, key = 2, value = hello-2
polls out: 3time: 2018-06-13 15:53:07
time = 2018-06-13 15:53:07, partition = 2, offset = 134, key = 3, value = hello-3
polls out: 4time: 2018-06-13 15:53:10
polls out: 5time: 2018-06-13 15:53:13
想到异常里提到的处理消息时间过长(spending too much time message processing)
Consumer代码增加处理时间
public class ConsumerTest {
@Test
public void TestCon() throws InterruptedException {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "false");
props.put("auto.offset.reset", "earliest");
props.put("max.poll.records", 5);
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
consumer.subscribe(Arrays.asList("user_behavior"));
int i = 0;
while (true) {
ConsumerRecords<String, String> records = consumer.poll(3000);
System.out.println("polls out: " + ++i + "time: " + KafkaHelper.timestmp2date(System.currentTimeMillis()));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("time = %s, partition = %s, offset = %d, key = %s, value = %s%n",
KafkaHelper.timestmp2date(record.timestamp()),
record.partition(),
record.offset(),
record.key(),
record.value());
TimeUnit.SECONDS.sleep(2);
}
consumer.commitSync();
}
}
}
polls out: 1time: 2018-06-13 15:59:13
polls out: 2time: 2018-06-13 15:59:16
polls out: 3time: 2018-06-13 15:59:19
polls out: 4time: 2018-06-13 15:59:22
polls out: 5time: 2018-06-13 15:59:22
time = 2018-06-13 15:59:22, partition = 2, offset = 135, key = 0, value = hello-0
time = 2018-06-13 15:59:22, partition = 2, offset = 136, key = 2, value = hello-2
time = 2018-06-13 15:59:22, partition = 2, offset = 137, key = 3, value = hello-3
org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.sendOffsetCommitRequest(ConsumerCoordinator.java:713)
at org.apache.kafka.clients.consumer.internals.ConsumerCoordinator.commitOffsetsSync(ConsumerCoordinator.java:596)
...
久违的异常终于出现了
至此可以看出max.poll.interval.ms是获取消息后,处理这些消息所用时间不能超过该值。即:两次poll的时间间隔最大时间
那么对于何时发送心跳想必也是在调用poll(timeout)方法的时候发送的(猜测),因为超过了max.poll.interval,ms后,这个consumer就被视为挂了。
ps:sleep时间改为0.5秒也会抛异常,因为每次poll5条消息,处理时间2.5s>max.poll.interval,ms=1000ms
异常解决
a)调大max.poll.interval,ms,默认300000(300s)
b)调小max.poll.records,默认500
c)另起线程
后续:
写一个单独处理的message的线程,这样消费和处理分开就不会出现此异常。但要注意处理完一批消息后才能提交offset,然后进行下次的poll(会用到CountDownLatch)
总结:
遇到Exception要淡定,每个Exception搞清楚缘由后都是一次提高的过程。
Ps: 代码中包含<strong>标签是因为我想在更改出加粗,生成后就多了<strong>标签了。