值得注意的是,在opencv4.x版本中,引入 SurfDescriptorExtractor 等构建引入的库不再是nonfree/nonfree.hpp,而是
#include "opencv2/xfeatures2d/nonfree.hpp"
#include "opencv2/xfeatures2d.hpp"
在构建detector和extractor使用的是 SURF::create()方法,具体代码在opencv4.3.0版本上跑通,如下:
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/xfeatures2d/nonfree.hpp"
#include "opencv2/xfeatures2d.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/imgproc.hpp"
#include <opencv2/imgproc/types_c.h>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;
int main()
{
//【0】改变console字体颜色
system("color 1F");
//【1】载入原始图片
Mat srcImage1 = imread("E:/Toky/VsProject/ColoNavigation/ColoNavi_Opencv/ColoNavi_Opencv/data/after_remove_hilight/4.jpg", 1);
Mat srcImage2 = imread("E:/Toky/VsProject/ColoNavigation/ColoNavi_Opencv/ColoNavi_Opencv/data/after_remove_hilight/5.jpg", 1);
Mat copysrcImage1 = srcImage1.clone();
Mat copysrcImage2 = srcImage2.clone();
if (!srcImage1.data || !srcImage2.data)
{
printf("读取图片错误,请确定目录下是否有imread函数指定的图片存在~! \n"); return false;
}
//【2】使用SURF算子检测关键点
int minHessian = 400;//SURF算法中的hessian阈值
Ptr<SURF> detector = SURF::create(minHessian);//定义一个SurfFeatureDetector(SURF) 特征检测类对象
vector<KeyPoint> keypoints_object, keypoints_scene;//vector模板类,存放任意类型的动态数组
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector->detect(srcImage1, keypoints_object);
detector->detect(srcImage2, keypoints_scene);
//【4】计算描述符(特征向量)
Ptr<SURF> extractor = SURF::create();
Mat descriptors_object, descriptors_scene;
extractor->compute(srcImage1, keypoints_object, descriptors_object);
extractor->compute(srcImage2, keypoints_scene, descriptors_scene);
//【5】使用FLANN匹配算子进行匹配
FlannBasedMatcher matcher;
vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;//最小距离和最大距离
//【6】计算出关键点之间距离的最大值和最小值
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf(">Max dist 最大距离 : %f \n", max_dist);
printf(">Min dist 最小距离 : %f \n", min_dist);
//【7】存下匹配距离小于3*min_dist的点对
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
//绘制出匹配到的关键点
Mat img_matches;
drawMatches(srcImage1, keypoints_object, srcImage2, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//定义两个局部变量
vector<Point2f> obj;
vector<Point2f> scene;
//从匹配成功的匹配对中获取关键点
for (unsigned int i = 0; i < good_matches.size(); i++)
{
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
vector<unsigned char> listpoints;
//Mat H = findHomography( obj, scene, CV_RANSAC );//计算透视变换
Mat H = findHomography(obj, scene, RANSAC, 3, listpoints);//计算透视变换
std::vector< DMatch > goodgood_matches;
for (int i = 0; i < listpoints.size(); i++)
{
if ((int)listpoints[i])
{
goodgood_matches.push_back(good_matches[i]);
cout << (int)listpoints[i] << endl;
}
}
cout << "listpoints大小:" << listpoints.size() << endl;
cout << "goodgood_matches大小:" << goodgood_matches.size() << endl;
cout << "good_matches大小:" << good_matches.size() << endl;
Mat Homgimg_matches;
drawMatches(copysrcImage1, keypoints_object, copysrcImage2, keypoints_scene,
goodgood_matches, Homgimg_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imshow("去除误匹配点后;", Homgimg_matches);
//从待测图片中获取角点
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0); obj_corners[1] = cvPoint(srcImage1.cols, 0);
obj_corners[2] = cvPoint(srcImage1.cols, srcImage1.rows); obj_corners[3] = cvPoint(0, srcImage1.rows);
vector<Point2f> scene_corners(4);
//进行透视变换
perspectiveTransform(obj_corners, scene_corners, H);
//绘制出角点之间的直线
line(img_matches, scene_corners[0] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[1] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[1] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[2] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[2] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[3] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[3] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[0] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
//显示最终结果
imshow("效果图", img_matches);
waitKey(0);
return 0;
}
实现效果:
参考:
http://www.mamicode.com/info-detail-1966781.html