Bootstrap

使用PyTorch设计卷积神经网络(CNN)来处理遥感图像Indian Pines数据集

目录

使用PyTorch设计卷积神经网络(CNN)来处理遥感图像Indian Pines数据集,以下是设计和实现这些网络的步骤:

1.数据准备:

        1.1 首先,需要加载Indian Pines数据集。

        1.2 将数据集转换为PyTorch张量,以便能够使用PyTorch框架进行处理。

2.数据预处理:

        2.1 根据需要对数据进行归一化或标准化。

        2.2 将数据集分割为训练集和测试集。

3.定义网络结构:

4.定义损失函数和优化器:

        4.1 选择一个适合分类任务的损失函数,例如交叉熵损失。

         4.2 选择一个优化器,如Adam或SGD。

5.训练网络:

        使用训练数据来训练网络,并通过反向传播更新权重。

6.评估网络:

        在测试集上评估网络的性能。


使用PyTorch设计卷积神经网络(CNN)来处理遥感图像Indian Pines数据集,以下是设计和实现这些网络的步骤:

1.数据准备:

        1.1 首先,需要加载Indian Pines数据集。
data = scipy.io.loadmat("D:/Indian_pines_corrected.mat")['indian_pines_corrected']
gt = scipy.io.loadmat("D:/Indian_pines_gt.mat")['indian_pines_gt'].ravel()  # 确保标签是一个一维数组
        因为数据集是一个MAT文件,所以使用scipy.io模块来读取它。
        1.2 将数据集转换为PyTorch张量,以便能够使用PyTorch框架进行处理。
# 将NumPy数组转换为PyTorch张量
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
        这段代码是在使用PyTorch库将NumPy数组转换为PyTorch张量(tensor),这是进行深度学习训练之前常见的步骤。 

2.数据预处理:

        2.1 根据需要对数据进行归一化或标准化。
# 数据预处理
num_bands = data.shape[2]
X = data.reshape(-1, num_bands)

# 归一化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
        在机器学习和数据科学中,数据预处理是一个非常重要的步骤,它可以帮助提高模型的性能和准确性。首先我们要使用Python语言中的NumPy库进行数据预处理的常见操作。
        在这段代码中,data 变量假定是一个多维数组,通常是一个三维数组,其中包含了图像数据或其他类型的多维数据。data.shape[2] 表示这个数组的第三个维度的大小,也就是波段数(例如在遥感图像中)。
   X = data.reshape(-1, num_bands) 这行代码的作用是将原始的多维数组 data 重塑为一个二维数组 X。其中 -1 表示让NumPy自动计算这个维度的大小,以确保数组的元素总数保持不变。num_bands 是数组的第三个维度的大小,表示每个样本的特征数或波段数。
        具体来说,如果 data 是一个形状为 (a, b, num_bands) 的数组,那么 reshape(-1, num_bands) 操作将把它转换为一个形状为 (a*b, num_bands) 的数组。这样,每一行代表一个样本,每一列代表一个特征。       
        归一化是数据预处理中的一个关键步骤,特别是当你的数据集包含不同量级的特征时。归一化可以帮助算法更有效地工作,因为它确保了所有特征对模型的影响是均衡的。
        在这里的代码片段中,使用了 StandardScaler 来进行数据的归一化处理,这是 scikit-learn 库中的一个常用工具。
   scaler = StandardScaler():创建一个 StandardScaler 对象。StandardScaler 是一个预处理器,用于将数据标准化(或归一化)到均值为0,标准差为1的标准正态分布。
   X_scaled = scaler.fit_transform(X):对数据集 X 执行 fit_transform 方法。这个方法首先计算数据集 X 的均值和标准差(fit 阶段),然后使用这些统计量来转换数据,使其符合标准化的要求(transform 阶段)。结果 X_scaled 就是归一化后的数据集。
        归一化后的数据具有以下特点:
                 每个特征的均值变为0。 
                 每个特征的标准差变为1。
        2.2 将数据集分割为训练集和测试集。
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, gt, test_size=0.2, random_state=42)
划分训练集和测试集是非常重要的,因为:
  • 训练集用于训练模型,学习数据的特征和模式。
  • 测试集用于评估模型的性能,确保模型没有过拟合,并且能够泛化到未见过的数据上。
         X_train, X_test:表示划分后的训练特征集和测试特征集。
         y_train, y_test:表示对应的训练目标集和测试目标集。这里的目标变量 gt 应该是一个数组,包含了你想要模型预测的值。
         test_size=0.2:指定测试集占整个数据集的比例,这里是20%。这意味着80%的数据将用于训练,20%的数据将用于测试。
         random_state=42:指定随机数生成器的种子,以确保每次运行代码时,数据的划分是一致的。这有助于实验的可重复性。

3.定义网络结构:

        根据选择,设计一个一维卷积网络或全连接网络。对于一维卷积,可使用torch.nn.Conv1d,而对于全连接网络,可使用torch.nn.Linear。
# 为Conv1d增加通道维度
X_train_tensor = X_train_tensor.unsqueeze(1)
X_test_tensor = X_test_tensor.unsqueeze(1)

# 定义网络
class SpectralCNN(nn.Module):
    def __init__(self, num_bands, num_classes):
        super(SpectralCNN, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=3, padding=1)
        self.pool = nn.MaxPool1d(kernel_size=2)
        self.conv2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, padding=1)

        # 计算经过两次卷积和池化后的输出大小
        # 卷积后,宽度保持不变;池化后,宽度减半
        conv_output_size = num_bands
        pool_output_size = int(np.ceil(conv_output_size / 2))  # 第一次池化后的大小
        pool_output_size = int(np.ceil(pool_output_size / 2))  # 第二次池化后的大小

        # 更新全连接层的输入大小
        self.fc1 = nn.Linear(128 * pool_output_size, num_classes)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = x.view(x.size(0), -1)  # 扁平化特征向量
        x = self.fc1(x)
        return x
这段代码定义了一个使用PyTorch框架的卷积神经网络(CNN)类 SpectralCNN,它继承自 nn.Module。这个网络专门设计用于处理光谱数据,其中 num_bands 表示输入数据的波段数,num_classes 表示输出的类别数。下面是对这段代码的详细解释:
  1. 初始化方法 (__init__):
    • 首先,它调用父类 nn.Module 的初始化方法。
  2. 卷积层 (self.conv1self.conv2):
    • self.conv1 是第一个一维卷积层,具有1个输入通道(对应于波段数),64个输出通道,卷积核大小为3,填充为1。填充为1意味着在输入的两侧各添加一个零填充,以保持输出的宽度不变。
    • self.conv2 是第二个一维卷积层,具有64个输入通道(第一个卷积层的输出通道数),128个输出通道,卷积核和填充与第一个卷积层相同。
  3. 池化层 (self.pool):
    • 使用最大池化 (MaxPool1d),池化窗口大小为2。这将减少特征图的宽度,但保持高度不变。
  4. 计算输出大小:
    • 通过两次卷积和池化操作后,需要计算全连接层的输入大小。这里使用了 np.ceil 函数来向上取整,以确保即使在池化后,输出大小也能正确计算。
  5. 全连接层 (self.fc1):
    • 根据经过两次卷积和池化后的特征图大小,创建一个全连接层,将特征图展平后连接到 num_classes 个输出节点。

4.定义损失函数和优化器:

        4.1 选择一个适合分类任务的损失函数,例如交叉熵损失。
         4.2 选择一个优化器,如Adam或SGD。
# 初始化模型
num_classes = len(np.unique(gt))
model = SpectralCNN(num_bands=X_train.shape[1], num_classes=num_classes)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
损失函数 (criterion): 
        这里使用的是 nn.CrossEntropyLoss(),这是一个常用于多分类问题的损失函数。它结合了 LogSoftmax 层和 NLLLoss(负对数似然损失),使得模型在训练时可以优化分类任务的性能。CrossEntropyLoss 会计算模型输出的对数概率和目标类别的负对数似然损失。
优化器 (optimizer):
        这里使用的是 torch.optim.Adam 优化器,它是 Adam(自适应矩估计)算法的实现。Adam 优化器是一种流行的算法,因为它结合了动量(Momentum)和 RMSprop 的优点。在你的代码中,model.parameters() 指定了优化器需要更新的模型参数,lr=0.001 设置了学习率为0.001,这是每次参数更新时使用的步长。

5.训练网络:

        使用训练数据来训练网络,并通过反向传播更新权重。
# 训练模型
num_epochs = 10000  # 设置训练轮数

# 开始训练模型
for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)
    loss.backward()
    optimizer.step()
    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
这段代码展示了一个基本的深度学习模型训练循环,这是一个迭代过程,模型在每个周期(epoch)上学习数据的特征。下面是对代码的解释:
  1. 训练循环:
    for epoch in range(num_epochs): 这个循环会执行指定次数的训练周期。num_epochs 应该在代码的其他地方定义。
  2. 训练模式:
    model.train() 将模型设置为训练模式,这会启用如 Dropout 等特定于训练阶段的层。
  3. 梯度清零:
    optimizer.zero_grad() 清除之前的梯度,以防止它们在反向传播时累积。
  4. 前向传播:
    outputs = model(X_train_tensor) 执行模型的前向传播,计算给定输入的输出。
  5. 计算损失:
    loss = criterion(outputs, y_train_tensor) 计算模型输出和目标标签之间的损失。
  6. 反向传播:
    loss.backward() 计算损失相对于模型参数的梯度。
  7. 参数更新:
    optimizer.step() 更新模型的参数以减少损失。
  8. 打印损失:
    print 语句在每个周期结束时打印当前周期的损失值,这有助于监控训练过程。

6.评估网络:

        在测试集上评估网络的性能。
# 测试模型
def evaluate_model(model, X_test_tensor, y_test_tensor):
    model.eval()  # 设置模型为评估模式
    with torch.no_grad():  # 禁用梯度计算
        outputs = model(X_test_tensor)
        _, predicted = torch.max(outputs.data, 1)
        total = y_test_tensor.size(0)
        correct = (predicted == y_test_tensor).sum().item()

        print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))

# 在训练结束后评估模型
evaluate_model(model, X_test_tensor, y_test_tensor)
这里定义的 evaluate_model 函数是一个用于评估模型性能的实用工具,特别是在分类任务中。下面是这段代码的详细解释:
  1. 设置评估模式:
    • model.eval() 将模型设置为评估模式,这会禁用如 Dropout 等在训练时使用的特定层。
  2. 禁用梯度计算:
    • with torch.no_grad(): 上下文管理器禁用了梯度计算,这在评估阶段是有用的,因为它减少了内存消耗并加速了计算。
  3. 执行前向传播:
    • outputs = model(X_test_tensor) 执行模型的前向传播,得到模型对测试数据的预测输出。
  4. 获取预测结果:
    • _, predicted = torch.max(outputs.data, 1) 计算模型输出中概率最高的类别索引,即预测的类别。这里 outputs.data 是一个二维张量,第一维是批次中的样本,第二维是类别的概率。
  5. 计算正确预测数量:
    • correct = (predicted == y_test_tensor).sum().item() 计算预测正确的样本数量。这里使用 .sum() 来累加所有正确的预测,并通过 .item() 将其转换为一个标量。
  6. 计算准确率:
    • total = y_test_tensor.size(0) 获取测试集的样本总数。
    • print 语句打印出模型在测试集上的准确率,即正确预测的样本数占总样本数的比例

代码汇总:

import scipy.io
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 加载数据和标签
data = scipy.io.loadmat("D:/Indian_pines_corrected.mat")['indian_pines_corrected']
gt = scipy.io.loadmat("D:/Indian_pines_gt.mat")['indian_pines_gt'].ravel()  # 确保标签是一个一维数组

# 数据预处理
num_bands = data.shape[2]
X = data.reshape(-1, num_bands)

# 归一化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, gt, test_size=0.2, random_state=42)

# 将NumPy数组转换为PyTorch张量
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
y_test_tensor = torch.tensor(y_test, dtype=torch.long)

# 为Conv1d增加通道维度
X_train_tensor = X_train_tensor.unsqueeze(1)
X_test_tensor = X_test_tensor.unsqueeze(1)

# 定义网络
class SpectralCNN(nn.Module):
    def __init__(self, num_bands, num_classes):
        super(SpectralCNN, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=3, padding=1)
        self.pool = nn.MaxPool1d(kernel_size=2)
        self.conv2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, padding=1)

        # 计算经过两次卷积和池化后的输出大小
        # 卷积后,宽度保持不变;池化后,宽度减半
        conv_output_size = num_bands
        pool_output_size = int(np.ceil(conv_output_size / 2))  # 第一次池化后的大小
        pool_output_size = int(np.ceil(pool_output_size / 2))  # 第二次池化后的大小

        # 更新全连接层的输入大小
        self.fc1 = nn.Linear(128 * pool_output_size, num_classes)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = x.view(x.size(0), -1)  # 扁平化特征向量
        x = self.fc1(x)
        return x

# 初始化模型
num_classes = len(np.unique(gt))
model = SpectralCNN(num_bands=X_train.shape[1], num_classes=num_classes)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10000  # 设置训练轮数

# 开始训练模型
for epoch in range(num_epochs):
    model.train()
    optimizer.zero_grad()
    outputs = model(X_train_tensor)
    loss = criterion(outputs, y_train_tensor)
    loss.backward()
    optimizer.step()
    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')


# 测试模型
def evaluate_model(model, X_test_tensor, y_test_tensor):
    model.eval()  # 设置模型为评估模式
    with torch.no_grad():  # 禁用梯度计算
        outputs = model(X_test_tensor)
        _, predicted = torch.max(outputs.data, 1)
        total = y_test_tensor.size(0)
        correct = (predicted == y_test_tensor).sum().item()

        print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))

# 在训练结束后评估模型
evaluate_model(model, X_test_tensor, y_test_tensor)

训练结果展示:

;