Bootstrap

python随机森林特征重要性,python随机森林分类模型

大家好,小编为大家解答python随机森林特征重要性的问题。很多人还不知道python随机森林分类模型,现在让我们一起来看看吧!

说明:这是一个机器学习实战项目(附带数据+代码),如需数据+完整代码可以直接到文章最后获取。

1.项目背景

      高质量的产品不仅能很好地满足顾客对产品使用功能的需要,获得良好的使用体验,提升企业形象和商誉,同时能为企业减少售后维修成本,增加利润python做个笑脸。燃气灶市场已成为继家电市场之后各大电器公司竞争的新战场。某电器公司的燃气灶产品销售额一直在国内处于领先地位,把产品质量视为重中之重,每年都要对其产品质量数据进行分析研究,以期不断完善,精益求精。

2.获取数据

      本次建模数据来源于某电器公司某月燃气灶质量情况统计数据,记录到的燃气灶故障现象均为“打不着火”,其主要的数据基本统计概况如下:

特征变量数:8

数据记录数:1245

是否有NA值:否

是否有异常值:否

去除异常值和NA值后的数据共计1245条,其特征变量详情如下:

(1)机型:代表所售燃气灶的型号,共计204个型号。

(2)故障代码:代表燃气灶维修部分的记录,分别代表故障模式、故障模式细分、维修方式、故障名称等。

(3)故障模式:表示燃气灶故障的基本情况,分为“微动开关坏”、“热电偶坏”、“电极针坏”、“电磁阀坏”、“脉冲器坏”等5种。

(4)故障模式细分:根据故障基本情况,故障类型又细分为“开裂”、“变形”、“老化”、“调整电极针位置”、“热电偶与电磁阀接触不良”等5种。

(5)维修方式:根据不同燃气灶的具体情况,采用的维修方式分为“更换”和“未更换”2种。

(6)故障名称:根据购买和维修之间的时间跨度,分为“保内”和“保外”两种。

(7)分公司:共有61个分公司负责销售和维修。

(8)单据类型:针对具体情况,每个维修单类型分为“调试”、“维修”、“改气源”、“其它”等4种。

 

3.数据预处理
;