Bootstrap

LeakCanary 详解

1.背景

LeakCanary 是一种方便的内存泄露检查工具,与相对于用dump 内存 然后用MAT工具去分析,要简单便捷很多,我们需要了解如何使用这个工具及其背后的原理

2.基本使用

2.1

加入远程引用


    debugCompile 'com.squareup.leakcanary:leakcanary-android:1.6.1'
    releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.6.1'

2.2

LeakCanary.install(this);

3原理追查

因为只有一行代码 LeakCanary.install(this); 我们从这个行进行追查

  public static RefWatcher install(Application application) {
    return refWatcher(application).listenerServiceClass(DisplayLeakService.class)
        .excludedRefs(AndroidExcludedRefs.createAppDefaults().build())
        .buildAndInstall();
  }
public RefWatcher buildAndInstall() {
    if (LeakCanaryInternals.installedRefWatcher != null) {
      throw new UnsupportedOperationException("buildAndInstall() should only be called once.");
    }
    RefWatcher refWatcher = build();
    if (refWatcher != DISABLED) {
      if (watchActivities) {
        ActivityRefWatcher.install(context, refWatcher);
      }
      if (watchFragments) {
        FragmentRefWatcher.Helper.install(context, refWatcher);
      }
    }
    LeakCanaryInternals.installedRefWatcher = refWatcher;
    return refWatcher;
  }

我们可以看到install方法其实是创建了一个 refWatcher 这个核心类是整个LeakCanary的重要成员变量,然后这个成员变量还被
ActivityRefWatcher.install(context, refWatcher); 这个方法是监听Activity的生命周期 代码如下

  public static void install(Context context, RefWatcher refWatcher) {
    Application application = (Application) context.getApplicationContext();
    ActivityRefWatcher activityRefWatcher = new ActivityRefWatcher(application, refWatcher);

    application.registerActivityLifecycleCallbacks(activityRefWatcher.lifecycleCallbacks);
  }

这一块其实是用Android 原生的方法,监听Activity的生命周期

public final class ActivityRefWatcher {

  public static void installOnIcsPlus(Application application, RefWatcher refWatcher) {
    install(application, refWatcher);
  }

  public static void install(Context context, RefWatcher refWatcher) {
    Application application = (Application) context.getApplicationContext();
    ActivityRefWatcher activityRefWatcher = new ActivityRefWatcher(application, refWatcher);

    application.registerActivityLifecycleCallbacks(activityRefWatcher.lifecycleCallbacks);
  }

  private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
      new ActivityLifecycleCallbacksAdapter() {
        @Override public void onActivityDestroyed(Activity activity) {
          refWatcher.watch(activity);
        }
      };

  private final Application application;
  private final RefWatcher refWatcher;

  private ActivityRefWatcher(Application application, RefWatcher refWatcher) {
    this.application = application;
    this.refWatcher = refWatcher;
  }

  public void watchActivities() {
    // Make sure you don't get installed twice.
    stopWatchingActivities();
    application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
  }

  public void stopWatchingActivities() {
    application.unregisterActivityLifecycleCallbacks(lifecycleCallbacks);
  }
}

我们可以了解到当一个Activity的Destroy被调用的时候会调到到这个方法中来
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
new ActivityLifecycleCallbacksAdapter() {
@Override public void onActivityDestroyed(Activity activity) {
refWatcher.watch(activity);
}
};

我们看一下watch方法

 public void watch(Object watchedReference, String referenceName) {
    if (this == DISABLED) {
      return;
    }
    checkNotNull(watchedReference, "watchedReference");
    checkNotNull(referenceName, "referenceName");
    final long watchStartNanoTime = System.nanoTime();
    String key = UUID.randomUUID().toString();
    retainedKeys.add(key);
    final KeyedWeakReference reference =
        new KeyedWeakReference(watchedReference, key, referenceName, queue);

    ensureGoneAsync(watchStartNanoTime, reference);
  }

我们看到销毁的Activity被包成了一个弱引用,弱引用就是那种GC后会被回收的一种引用队列

我们看最关键的ensureGoneAsync 方法

  @SuppressWarnings("ReferenceEquality") // Explicitly checking for named null.
  Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
    long gcStartNanoTime = System.nanoTime();
    long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);

    removeWeaklyReachableReferences();

    if (debuggerControl.isDebuggerAttached()) {
      // The debugger can create false leaks.
      return RETRY;
    }
    if (gone(reference)) {
      return DONE;
    }
    gcTrigger.runGc();
    removeWeaklyReachableReferences();
    if (!gone(reference)) {
      long startDumpHeap = System.nanoTime();
      long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);

      File heapDumpFile = heapDumper.dumpHeap();
      if (heapDumpFile == RETRY_LATER) {
        // Could not dump the heap.
        return RETRY;
      }
      long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);

      HeapDump heapDump = heapDumpBuilder.heapDumpFile(heapDumpFile).referenceKey(reference.key)
          .referenceName(reference.name)
          .watchDurationMs(watchDurationMs)
          .gcDurationMs(gcDurationMs)
          .heapDumpDurationMs(heapDumpDurationMs)
          .build();

      heapdumpListener.analyze(heapDump);
    }
    return DONE;
  }

这个是第一层GC判断 就是如果刚好加入就被GC掉了 那个中介Done了 如果暂时还没有被GC掉 那么就走gone(reference)方法
把heapDump信息给拿出来进行真正的分析判断 我们看一下 heapdumpListener.analyze(heapDump); 这个的实现我们看一下具体细节。

 @Override public void analyze(HeapDump heapDump) {
    checkNotNull(heapDump, "heapDump");
    HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass);
  }

我们继续追一下

 */
public final class HeapAnalyzerService extends ForegroundService
    implements AnalyzerProgressListener {

  private static final String LISTENER_CLASS_EXTRA = "listener_class_extra";
  private static final String HEAPDUMP_EXTRA = "heapdump_extra";

  public static void runAnalysis(Context context, HeapDump heapDump,
      Class<? extends AbstractAnalysisResultService> listenerServiceClass) {
    setEnabledBlocking(context, HeapAnalyzerService.class, true);
    setEnabledBlocking(context, listenerServiceClass, true);
    Intent intent = new Intent(context, HeapAnalyzerService.class);
    intent.putExtra(LISTENER_CLASS_EXTRA, listenerServiceClass.getName());
    intent.putExtra(HEAPDUMP_EXTRA, heapDump);
    ContextCompat.startForegroundService(context, intent);
  }

  public HeapAnalyzerService() {
    super(HeapAnalyzerService.class.getSimpleName(), R.string.leak_canary_notification_analysing);
  }

  @Override protected void onHandleIntentInForeground(@Nullable Intent intent) {
    if (intent == null) {
      CanaryLog.d("HeapAnalyzerService received a null intent, ignoring.");
      return;
    }
    String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA);
    HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA);

    HeapAnalyzer heapAnalyzer =
        new HeapAnalyzer(heapDump.excludedRefs, this, heapDump.reachabilityInspectorClasses);

    AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey,
        heapDump.computeRetainedHeapSize);
    AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);
  }

  @Override public void onProgressUpdate(Step step) {
    int percent = (int) ((100f * step.ordinal()) / Step.values().length);
    CanaryLog.d("Analysis in progress, working on: %s", step.name());
    String lowercase = step.name().replace("_", " ").toLowerCase();
    String message = lowercase.substring(0, 1).toUpperCase() + lowercase.substring(1);
    showForegroundNotification(100, percent, false, message);
  }
}


这个是一个 IntentService 抛开细节它开启这个服务 执行代码在onHandleIntentInForeground 这个方法中 我们看到 执行了heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey,
heapDump.computeRetainedHeapSize); 这个方法

checkForLeak方法是整个项目最关键的方法 真正去判断是否存在泄露

  public AnalysisResult checkForLeak(File heapDumpFile, String referenceKey,
      boolean computeRetainedSize) {
    long analysisStartNanoTime = System.nanoTime();

    if (!heapDumpFile.exists()) {
      Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);
      return failure(exception, since(analysisStartNanoTime));
    }

    try {
      listener.onProgressUpdate(READING_HEAP_DUMP_FILE);
      HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);
      HprofParser parser = new HprofParser(buffer);
      listener.onProgressUpdate(PARSING_HEAP_DUMP);
      Snapshot snapshot = parser.parse();
      listener.onProgressUpdate(DEDUPLICATING_GC_ROOTS);
      deduplicateGcRoots(snapshot);
      listener.onProgressUpdate(FINDING_LEAKING_REF);
      Instance leakingRef = findLeakingReference(referenceKey, snapshot);

      // False alarm, weak reference was cleared in between key check and heap dump.
      if (leakingRef == null) {
        return noLeak(since(analysisStartNanoTime));
      }
      return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef, computeRetainedSize);
    } catch (Throwable e) {
      return failure(e, since(analysisStartNanoTime));
    }
  }

我们可以看到他们是使用反射找到相关的引用去做这个事情,如果反射能拿到,那么说明有存在这个弱引用,存在内存泄露

  private Instance findLeakingReference(String key, Snapshot snapshot) {
    ClassObj refClass = snapshot.findClass(KeyedWeakReference.class.getName());
    if (refClass == null) {
      throw new IllegalStateException(
          "Could not find the " + KeyedWeakReference.class.getName() + " class in the heap dump.");
    }
    List<String> keysFound = new ArrayList<>();
    for (Instance instance : refClass.getInstancesList()) {
      List<ClassInstance.FieldValue> values = classInstanceValues(instance);
      Object keyFieldValue = fieldValue(values, "key");
      if (keyFieldValue == null) {
        keysFound.add(null);
        continue;
      }
      String keyCandidate = asString(keyFieldValue);
      if (keyCandidate.equals(key)) {
        return fieldValue(values, "referent");
      }
      keysFound.add(keyCandidate);
    }
    throw new IllegalStateException(
        "Could not find weak reference with key " + key + " in " + keysFound);
  }

如果存在弱引用那么将通过镜像搞成最短路径显示在界面上

  private AnalysisResult findLeakTrace(long analysisStartNanoTime, Snapshot snapshot,
      Instance leakingRef, boolean computeRetainedSize) {

    listener.onProgressUpdate(FINDING_SHORTEST_PATH);
    ShortestPathFinder pathFinder = new ShortestPathFinder(excludedRefs);
    ShortestPathFinder.Result result = pathFinder.findPath(snapshot, leakingRef);

    // False alarm, no strong reference path to GC Roots.
    if (result.leakingNode == null) {
      return noLeak(since(analysisStartNanoTime));
    }

    listener.onProgressUpdate(BUILDING_LEAK_TRACE);
    LeakTrace leakTrace = buildLeakTrace(result.leakingNode);

    String className = leakingRef.getClassObj().getClassName();

    long retainedSize;
    if (computeRetainedSize) {

      listener.onProgressUpdate(COMPUTING_DOMINATORS);
      // Side effect: computes retained size.
      snapshot.computeDominators();

      Instance leakingInstance = result.leakingNode.instance;

      retainedSize = leakingInstance.getTotalRetainedSize();

      // TODO: check O sources and see what happened to android.graphics.Bitmap.mBuffer
      if (SDK_INT <= N_MR1) {
        listener.onProgressUpdate(COMPUTING_BITMAP_SIZE);
        retainedSize += computeIgnoredBitmapRetainedSize(snapshot, leakingInstance);
      }
    } else {
      retainedSize = AnalysisResult.RETAINED_HEAP_SKIPPED;
    }

    return leakDetected(result.excludingKnownLeaks, className, leakTrace, retainedSize,
        since(analysisStartNanoTime));
  }

4.总结

LeakCanary 采用的就是 监听Activity的OnDestroy方法,如果调用了就搞成一个弱引用,通过GC去获取这个弱引用看是否还存在,如果存在就那么就存在内存泄露,如果不存在那么说明能被GC回收不存在内存泄露

;