Bootstrap

连续周期信号傅里叶级数 — Fourier Series of Continuous-Time Periodic Signals

数学家傅里叶猜想任何一个周期函数均可分解为一系列不同振幅、不同频率和不同相位的正弦函数的组合(由此,复杂的周期函数可分解为若干简单的三角函数,易于分析和处理)。即:
f ( t ) = C + ∑ k = 1 ∞ A k sin ⁡ ( k ω 0 t + φ k ) f(t) = C + \sum_{k=1}^{\infty}A_{k}\sin(k\omega_{0} t + \varphi_{k}) f(t)=C+k=1Aksin(kω0t+φk)

其中, C C C是常数项,也可理解为振幅为 0 0 0的三角函数,其频率和相位任意; A k A_{k} Ak k ω 0 k\omega_{0} kω0 φ k \varphi_{k} φk表示正弦函数 k k k的振幅、角频率和相位( ω 0 \omega_{0} ω0为基频,即为角频率的最小单元)。 k k k取值从 1 1 1到正无穷。因此,傅里叶级数也就是一个无穷级数。

接着我们利用两角和公式 sin ⁡ ( A + B ) = sin ⁡ ( A ) cos ⁡ ( B ) + cos ⁡ ( A ) sin ⁡ ( B ) \sin(A+B) = \sin(A)\cos(B)+\cos(A)\sin(B) sin(A+B)=sin(A)cos(B)+cos(A)sin(B)对上式做分解,得到:
f ( t ) = C + ∑ k = 1 ∞ A k cos ⁡ ( φ k ) sin ⁡ ( k ω 0 t ) + ∑ k = 1 ∞ A k sin ⁡ ( φ k ) cos ⁡ ( k ω 0 t ) f(t) = C + \sum_{k=1}^{\infty}A_{k}\cos(\varphi_{k})\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}A_{k}\sin(\varphi_{k})\cos(k\omega_{0} t) f(t)=C+k=1Akcos(φk)sin(kω0t)+k=1Aksin(φk)cos(kω0t)

A k cos ⁡ ( φ k ) = a k A_{k}\cos(\varphi_{k}) = a_{k} Akcos(φk)=ak A k sin ⁡ ( φ k ) = b k A_{k}\sin(\varphi_{k}) = b_{k} Aksin(φk)=bk,得到 f ( t ) f(t) f(t)的傅里叶级数表达式:
f ( t ) = C + ∑ k = 1 ∞ a k sin ⁡ ( k ω 0 t ) + ∑ k = 1 ∞ b k cos ⁡ ( k ω 0 t ) f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t) f(t)=C+k=1aksin(kω0t)+k=1bkcos(kω0t)

如果上式中的系数 C C C a n a_{n} an b n b_{n} bn可解,则 f ( t ) f(t) f(t)可分解为一系列简单的三角函数。

我们选择正弦函数 k k k中最大的周期 max ⁡ ( 2 π k ω 0 ) = 2 π ω 0 \max(\frac{2\pi}{k\omega_{0}}) = \frac{2\pi}{\omega_{0}} max(kω02π)=ω02π作为积分区间(保证所有的三角函数在此区间内积分为 0 0 0)。对 f ( t ) f(t) f(t)的傅里叶级数表达式在 [ 0 , 2 π ω 0 ] [0,\frac{2\pi}{\omega_{0}}] [0,ω02π]内积分得:
∫ 0 2 π ω 0 f ( t ) d t = ∫ 0 2 π ω 0 C d t + ∑ k = 1 ∞ a k ∫ 0 2 π ω 0 sin ⁡ ( k ω 0 t ) d t + ∑ k = 1 ∞ b k ∫ 0 2 π ω 0 cos ⁡ ( k ω 0 t ) d t = C 2 π ω 0 + ∑ k = 1 ∞ a k 0 + ∑ k = 1 ∞ b k 0 = C 2 π ω 0 \begin{aligned} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt & = \int_{0}^{\frac{2\pi}{\omega_{0}}}Cdt + \sum_{k=1}^{\infty}a_{k}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)dt \\ & = C\frac{2\pi}{\omega_{0}} + \sum_{k=1}^{\infty}a_{k}0 + \sum_{k=1}^{\infty}b_{k}0 \\ & = C\frac{2\pi}{\omega_{0}} \end{aligned} 0ω02πf(t)dt=0ω02πCdt+k=1ak0ω02πsin(kω0t)dt+k=1bk0ω02πcos(kω0t)dt=Cω02π+k=1ak0+k=1bk0=Cω02π

因此,系数 C C C得解:
C = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) d t C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt C=2πω00ω02πf(t)dt

接着 f ( t ) f(t) f(t)的傅里叶级数表达式左右两边同时乘以 cos ⁡ ( n ω 0 t ) \cos(n\omega_{0} t) cos(nω0t),得到:
cos ⁡ ( n ω 0 t ) f ( t ) = C cos ⁡ ( n ω 0 t ) + ∑ k = 1 ∞ a k sin ⁡ ( k ω 0 t ) cos ⁡ ( n ω 0 t ) + ∑ k = 1 ∞ b k cos ⁡ ( k ω 0 t ) cos ⁡ ( n ω 0 t ) \cos(n\omega_{0} t)f(t) = C\cos(n\omega_{0} t) + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t)\cos(n\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t)\cos(n\omega_{0} t) cos(nω0t)f(t)=Ccos(nω0t)+k=1aksin(kω0t)cos(nω0t)+k=1bkcos(kω0t)cos(nω0t)

对上式在 [ 0 , 2 π ω 0 ] [0,\frac{2\pi}{\omega_{0}}] [0,ω02π]内积分得:
∫ 0 2 π ω 0 cos ⁡ ( n ω 0 t ) f ( t ) d t = C ∫ 0 2 π ω 0 cos ⁡ ( n ω 0 t ) d t + ∑ k = 1 ∞ a k ∫ 0 2 π ω 0 sin ⁡ ( k ω 0 t ) cos ⁡ ( n ω 0 t ) d t + ∑ k = 1 ∞ b k ∫ 0 2 π ω 0 cos ⁡ ( k ω 0 t ) cos ⁡ ( n ω 0 t ) d t = C 0 + ∑ k = 1 ∞ a k ∫ 0 2 π ω 0 1 2 [ sin ⁡ ( k ω 0 t + n ω 0 t ) + sin ⁡ ( k ω 0 t − n ω 0 t ) ] d t + ∑ k = 1 ∞ b k ∫ 0 2 π ω 0 1 2 [ cos ⁡ ( k ω 0 t + n ω 0 t ) + cos ⁡ ( k ω 0 t − n ω 0 t ) ] d t = ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k + n ) ω 0 t ) d t + ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t + ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k + n ) ω 0 t ) d t + ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 ∞ a k 2 0 + ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t + ∑ k = 1 ∞ b k 2 0 + ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 n − 1 a k 2 ∫ 0 2 π ω 0 − sin ⁡ ( ( n − k ) ω 0 t ) d t + a n 2 ∫ 0 2 π ω 0 sin ⁡ ( ( n − n ) ω 0 t ) d t + ∑ k = n + 1 ∞ a k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t + ∑ k = 1 n − 1 b k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( n − k ) ω 0 t ) d t + b n 2 ∫ 0 2 π ω 0 cos ⁡ ( ( n − n ) ω 0 t ) d t + ∑ k = n + 1 ∞ b k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 n − 1 a k 2 0 + a n 2 0 + ∑ k = n + 1 ∞ a k 2 0 + ∑ k = 1 n − 1 b k 2 0 + b n 2 ∫ 0 2 π ω 0 1 d t + ∑ k = n + 1 ∞ b k 2 0 = b n 2 2 π ω 0 \begin{aligned} & \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt = C\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)dt + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)\cos(n\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)\cos(n\omega_{0} t)dt \\ & = C0 + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\sin(k\omega_{0} t+n\omega_{0} t) + \sin(k\omega_{0} t-n\omega_{0} t)]dt \\ & + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\cos(k\omega_{0} t+n\omega_{0} t) + \cos(k\omega_{0} t-n\omega_{0} t)]dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k+n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k+n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}0 + \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{b_{k}}{2}0 + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}-\sin((n-k)\omega_{0} t)dt + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & + \sum_{k=1}^{n-1}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-k)\omega_{0} t)dt + \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}0 + \frac{a_{n}}{2}0 + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}0 + \sum_{k=1}^{n-1}\frac{b_{k}}{2}0 + \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}1dt + \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}0 \\ & = \frac{b_{n}}{2}\frac{2\pi}{\omega_{0}} \end{aligned} 0ω02πcos(nω0t)f(t)dt=C0ω02πcos(nω0t)dt+k=1ak0ω02πsin(kω0t)cos(nω0t)dt+k=1bk0ω02πcos(kω0t)cos(nω0t)dt=C0+k=1ak0ω02π21[sin(kω0t+nω0t)+sin(kω0tnω0t)]dt+k=1bk0ω02π21[cos(kω0t+nω0t)+cos(kω0tnω0t)]dt=k=12ak0ω02πsin((k+n)ω0t)dt+k=12ak0ω02πsin((kn)ω0t)dt+k=12bk0ω02πcos((k+n)ω0t)dt+k=12bk0ω02πcos((kn)ω0t)dt=k=12ak0+k=12ak0ω02πsin((kn)ω0t)dt+k=12bk0+k=12bk0ω02πcos((kn)ω0t)dt=k=1n12ak0ω02πsin((nk)ω0t)dt+2an0ω02πsin((nn)ω0t)dt+k=n+12ak0ω02πsin((kn)ω0t)dt+k=1n12bk0ω02πcos((nk)ω0t)dt+2bn0ω02πcos((nn)ω0t)dt+k=n+12bk0ω02πcos((kn)ω0t)dt=k=1n12ak0+2an0+k=n+12ak0+k=1n12bk0+2bn0ω02π1dt+k=n+12bk0=2bnω02π

因此,系数 b n b_{n} bn得解:
b n = ω 0 π ∫ 0 2 π ω 0 cos ⁡ ( n ω 0 t ) f ( t ) d t b_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt bn=πω00ω02πcos(nω0t)f(t)dt

接着 f ( t ) f(t) f(t)的傅里叶级数表达式左右两边同时乘以 sin ⁡ ( n ω 0 t ) \sin(n\omega_{0} t) sin(nω0t),得到:
sin ⁡ ( n ω 0 t ) f ( t ) = C sin ⁡ ( n ω 0 t ) + ∑ k = 1 ∞ a k sin ⁡ ( k ω 0 t ) sin ⁡ ( n ω 0 t ) + ∑ k = 1 ∞ b k cos ⁡ ( k ω 0 t ) sin ⁡ ( n ω 0 t ) \sin(n\omega_{0} t)f(t) = C\sin(n\omega_{0} t) + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t)\sin(n\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t)\sin(n\omega_{0} t) sin(nω0t)f(t)=Csin(nω0t)+k=1aksin(kω0t)sin(nω0t)+k=1bkcos(kω0t)sin(nω0t)

对上式在 [ 0 , 2 π ω 0 ] [0,\frac{2\pi}{\omega_{0}}] [0,ω02π]内积分得:
∫ 0 2 π ω 0 sin ⁡ ( n ω 0 t ) f ( t ) d t = C ∫ 0 2 π ω 0 sin ⁡ ( n ω 0 t ) d t + ∑ k = 1 ∞ a k ∫ 0 2 π ω 0 sin ⁡ ( k ω 0 t ) sin ⁡ ( n ω 0 t ) d t + ∑ k = 1 ∞ b k ∫ 0 2 π ω 0 cos ⁡ ( k ω 0 t ) sin ⁡ ( n ω 0 t ) d t = C 0 + ∑ k = 1 ∞ a k ∫ 0 2 π ω 0 1 2 [ cos ⁡ ( k ω 0 t − n ω 0 t ) − cos ⁡ ( k ω 0 t + n ω 0 t ) ] d t + ∑ k = 1 ∞ b k ∫ 0 2 π ω 0 1 2 [ sin ⁡ ( k ω 0 t + n ω 0 t ) − sin ⁡ ( k ω 0 t − n ω 0 t ) ] d t = ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t − ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k + n ) ω 0 t ) d t + ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k + n ) ω 0 t ) d t − ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t − ∑ k = 1 ∞ a k 2 ∫ 0 2 π ω 0 0 + ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 0 − ∑ k = 1 ∞ b k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 n − 1 a k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( n − k ) ω 0 t ) d t + a n 2 ∫ 0 2 π ω 0 cos ⁡ ( ( n − n ) ω 0 t ) d t + ∑ k = n + 1 ∞ a k 2 ∫ 0 2 π ω 0 cos ⁡ ( ( k − n ) ω 0 t ) d t − ∑ k = 1 n − 1 b k 2 ∫ 0 2 π ω 0 − sin ⁡ ( ( n − k ) ω 0 t ) d t − b n 2 ∫ 0 2 π ω 0 sin ⁡ ( ( n − n ) ω 0 t ) d t − ∑ k = n + 1 ∞ b k 2 ∫ 0 2 π ω 0 sin ⁡ ( ( k − n ) ω 0 t ) d t = ∑ k = 1 n − 1 a k 2 0 + a n 2 ∫ 0 2 π ω 0 1 d t + ∑ k = n + 1 ∞ a k 2 0 − ∑ k = 1 n − 1 b k 2 0 − b n 2 0 − ∑ k = n + 1 ∞ b k 2 0 = a n 2 2 π ω 0 \begin{aligned} & \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt = C\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)dt + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)\sin(n\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)\sin(n\omega_{0} t)dt \\ & = C0 + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\cos(k\omega_{0} t-n\omega_{0} t) - \cos(k\omega_{0} t+n\omega_{0} t)]dt \\ & + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\sin(k\omega_{0} t+n\omega_{0} t) - \sin(k\omega_{0} t-n\omega_{0} t)]dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k+n)\omega_{0} t)dt \\ & + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k+n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}0 + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}0 - \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-k)\omega_{0} t)dt + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & - \sum_{k=1}^{n-1}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}-\sin((n-k)\omega_{0} t)dt - \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((n-n)\omega_{0} t)dt - \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}0 + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}1dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}0 - \sum_{k=1}^{n-1}\frac{b_{k}}{2}0 - \frac{b_{n}}{2}0 - \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}0 \\ & = \frac{a_{n}}{2}\frac{2\pi}{\omega_{0}} \end{aligned} 0ω02πsin(nω0t)f(t)dt=C0ω02πsin(nω0t)dt+k=1ak0ω02πsin(kω0t)sin(nω0t)dt+k=1bk0ω02πcos(kω0t)sin(nω0t)dt=C0+k=1ak0ω02π21[cos(kω0tnω0t)cos(kω0t+nω0t)]dt+k=1bk0ω02π21[sin(kω0t+nω0t)sin(kω0tnω0t)]dt=k=12ak0ω02πcos((kn)ω0t)dtk=12ak0ω02πcos((k+n)ω0t)dt+k=12bk0ω02πsin((k+n)ω0t)dtk=12bk0ω02πsin((kn)ω0t)dt=k=12ak0ω02πcos((kn)ω0t)dtk=12ak0ω02π0+k=12bk0ω02π0k=12bk0ω02πsin((kn)ω0t)dt=k=1n12ak0ω02πcos((nk)ω0t)dt+2an0ω02πcos((nn)ω0t)dt+k=n+12ak0ω02πcos((kn)ω0t)dtk=1n12bk0ω02πsin((nk)ω0t)dt2bn0ω02πsin((nn)ω0t)dtk=n+12bk0ω02πsin((kn)ω0t)dt=k=1n12ak0+2an0ω02π1dt+k=n+12ak0k=1n12bk02bn0k=n+12bk0=2anω02π

因此,系数 a n a_{n} an得解:
a n = ω 0 π ∫ 0 2 π ω 0 sin ⁡ ( n ω 0 t ) f ( t ) d t a_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt an=πω00ω02πsin(nω0t)f(t)dt

至此,已经得到傅里叶级数中各系数的表达式(如下),只要它们可积分,即 C C C a n a_{n} an b n b_{n} bn可解,那么就得到了函数 f ( t ) f(t) f(t)的傅里叶级数。
f ( t ) = C + ∑ k = 1 ∞ a k sin ⁡ ( k ω 0 t ) + ∑ k = 1 ∞ b k cos ⁡ ( k ω 0 t ) { C = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) d t a n = ω 0 π ∫ 0 2 π ω 0 sin ⁡ ( n ω 0 t ) f ( t ) d t b n = ω 0 π ∫ 0 2 π ω 0 cos ⁡ ( n ω 0 t ) f ( t ) d t f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t) \\ \begin{cases} C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt \\ a_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt \\ b_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt \end{cases} f(t)=C+k=1aksin(kω0t)+k=1bkcos(kω0t)C=2πω00ω02πf(t)dtan=πω00ω02πsin(nω0t)f(t)dtbn=πω00ω02πcos(nω0t)f(t)dt

傅里叶级数的复数形式

为此,我们需要引入欧拉公式。其构建了三角函数和复数之间的桥梁,如下:
e i x = cos ⁡ x + i sin ⁡ x e^{ix} = \cos x + i\sin x eix=cosx+isinx
其中, i = − 1 i = \sqrt{-1} i=1 。替换上式中的 x x x − x -x x,得到 e − i x = cos ⁡ − x + i sin ⁡ − x = cos ⁡ x − i sin ⁡ x e^{-ix} = \cos -x + i\sin -x = \cos x - i\sin x eix=cosx+isinx=cosxisinx。得到:
{ cos ⁡ x = e i x + e − i x 2 sin ⁡ x = e i x − e − i x 2 i \begin{cases} \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \end{cases} {cosx=2eix+eixsinx=2ieixeix
将上式代入三角函数形式的傅里叶级数中:
f ( t ) = C + ∑ k = 1 ∞ a k sin ⁡ ( k ω 0 t ) + ∑ k = 1 ∞ b k cos ⁡ ( k ω 0 t ) = C + ∑ k = 1 ∞ ( a k e i k ω 0 t − e − i k ω 0 t 2 i + b k e i k ω 0 t + e − i k ω 0 t 2 ) = C + ∑ k = 1 ∞ ( a k 2 i e i k ω 0 t − a k 2 i e − i k ω 0 t + b k 2 e i k ω 0 t + b k 2 e − i k ω 0 t ) = C + ∑ k = 1 ∞ ( − i a k 2 e i k ω 0 t + i a k 2 e − i k ω 0 t + b k 2 e i k ω 0 t + b k 2 e − i k ω 0 t ) = C + ∑ k = 1 ∞ b k − i a k 2 e i k ω 0 t + ∑ k = 1 ∞ b k + i a k 2 e − i k ω 0 t = C e i 0 ω 0 t + ∑ k = 1 ∞ b k − i a k 2 e i k ω 0 t + ∑ j = − 1 − ∞ b − j + i a − j 2 e i j ω 0 t \begin{aligned} & f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t) \\ & = C + \sum_{k=1}^{\infty}(a_{k}\frac{e^{ik\omega_{0} t}-e^{-ik\omega_{0} t}}{2i} + b_{k}\frac{e^{ik\omega_{0} t}+e^{-ik\omega_{0} t}}{2}) \\ & = C + \sum_{k=1}^{\infty}(\frac{a_{k}}{2i}e^{ik\omega_{0} t} - \frac{a_{k}}{2i}e^{-ik\omega_{0} t} + \frac{b_{k}}{2}e^{ik\omega_{0} t} + \frac{b_{k}}{2}e^{-ik\omega_{0} t}) \\ & = C + \sum_{k=1}^{\infty}(-\frac{ia_{k}}{2}e^{ik\omega_{0} t} + \frac{ia_{k}}{2}e^{-ik\omega_{0} t} + \frac{b_{k}}{2}e^{ik\omega_{0} t} + \frac{b_{k}}{2}e^{-ik\omega_{0} t}) \\ & = C + \sum_{k=1}^{\infty}\frac{b_{k}-ia_{k}}{2}e^{ik\omega_{0} t} + \sum_{k=1}^{\infty}\frac{b_{k}+ia_{k}}{2}e^{-ik\omega_{0} t} \\ & = Ce^{i0\omega_{0} t} + \sum_{k=1}^{\infty}\frac{b_{k}-ia_{k}}{2}e^{ik\omega_{0} t} + \sum_{j=-1}^{-\infty}\frac{b_{-j}+ia_{-j}}{2}e^{ij\omega_{0} t} \end{aligned} f(t)=C+k=1aksin(kω0t)+k=1bkcos(kω0t)=C+k=1(ak2ieikω0teikω0t+bk2eikω0t+eikω0t)=C+k=1(2iakeikω0t2iakeikω0t+2bkeikω0t+2bkeikω0t)=C+k=1(2iakeikω0t+2iakeikω0t+2bkeikω0t+2bkeikω0t)=C+k=12bkiakeikω0t+k=12bk+iakeikω0t=Cei0ω0t+k=12bkiakeikω0t+j=12bj+iajeijω0t

观察上式,可以得到傅里叶级数的复数形式:
f ( t ) = ∑ k = − ∞ ∞ X k e i k ω 0 t f(t) = \sum_{k=-\infty}^{\infty}X_{k}e^{ik\omega_{0} t} f(t)=k=Xkeikω0t

k ≥ 1 k \ge 1 k1时:
X k = b k − i a k 2 = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) ( cos ⁡ ( k ω 0 t ) − i sin ⁡ ( k ω 0 t ) ) d t = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i k ω 0 t d t X_{k} = \frac{b_{k}-ia_{k}}{2} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)(\cos(k\omega_{0} t)-i\sin(k\omega_{0} t))dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt Xk=2bkiak=2πω00ω02πf(t)(cos(kω0t)isin(kω0t))dt=2πω00ω02πf(t)eikω0tdt
k = 0 k = 0 k=0时:
X k = C = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) d t = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i 0 ω 0 t d t X_{k} = C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-i0\omega_{0} t}dt Xk=C=2πω00ω02πf(t)dt=2πω00ω02πf(t)ei0ω0tdt
k ≤ − 1 k \le -1 k1时,令 j = − k j=-k j=k
X k = b − k + i a − k 2 = b j + i a j 2 = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) ( cos ⁡ ( j ω 0 t ) + i sin ⁡ ( j ω 0 t ) ) d t = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e i j ω 0 t d t = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i k ω 0 t d t \begin{aligned} & X_{k} = \frac{b_{-k}+ia_{-k}}{2} = \frac{b_{j}+ia_{j}}{2} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)(\cos(j\omega_{0} t)+i\sin(j\omega_{0} t))dt \\ & = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{ij\omega_{0} t}dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt \end{aligned} Xk=2bk+iak=2bj+iaj=2πω00ω02πf(t)(cos(jω0t)+isin(jω0t))dt=2πω00ω02πf(t)eijω0tdt=2πω00ω02πf(t)eikω0tdt

至此,已经得到复数形式的傅里叶级数中系数的表达式(如下),只要它们可积分,即 X k X_{k} Xk可解,那么就得到了函数 f ( t ) f(t) f(t)的复数形式的傅里叶级数。
f ( t ) = ∑ k = − ∞ ∞ X k e i k ω 0 t f(t) = \sum_{k=-\infty}^{\infty}X_{k}e^{ik\omega_{0} t} f(t)=k=Xkeikω0t
其中, X n = ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i n ω 0 t d t X_{n} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-in\omega_{0} t}dt Xn=2πω00ω02πf(t)einω0tdt

;