数学家傅里叶猜想任何一个周期函数均可分解为一系列不同振幅、不同频率和不同相位的正弦函数的组合(由此,复杂的周期函数可分解为若干简单的三角函数,易于分析和处理)。即:
f
(
t
)
=
C
+
∑
k
=
1
∞
A
k
sin
(
k
ω
0
t
+
φ
k
)
f(t) = C + \sum_{k=1}^{\infty}A_{k}\sin(k\omega_{0} t + \varphi_{k})
f(t)=C+k=1∑∞Aksin(kω0t+φk)
其中, C C C是常数项,也可理解为振幅为 0 0 0的三角函数,其频率和相位任意; A k A_{k} Ak、 k ω 0 k\omega_{0} kω0和 φ k \varphi_{k} φk表示正弦函数 k k k的振幅、角频率和相位( ω 0 \omega_{0} ω0为基频,即为角频率的最小单元)。 k k k取值从 1 1 1到正无穷。因此,傅里叶级数也就是一个无穷级数。
接着我们利用两角和公式
sin
(
A
+
B
)
=
sin
(
A
)
cos
(
B
)
+
cos
(
A
)
sin
(
B
)
\sin(A+B) = \sin(A)\cos(B)+\cos(A)\sin(B)
sin(A+B)=sin(A)cos(B)+cos(A)sin(B)对上式做分解,得到:
f
(
t
)
=
C
+
∑
k
=
1
∞
A
k
cos
(
φ
k
)
sin
(
k
ω
0
t
)
+
∑
k
=
1
∞
A
k
sin
(
φ
k
)
cos
(
k
ω
0
t
)
f(t) = C + \sum_{k=1}^{\infty}A_{k}\cos(\varphi_{k})\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}A_{k}\sin(\varphi_{k})\cos(k\omega_{0} t)
f(t)=C+k=1∑∞Akcos(φk)sin(kω0t)+k=1∑∞Aksin(φk)cos(kω0t)
令
A
k
cos
(
φ
k
)
=
a
k
A_{k}\cos(\varphi_{k}) = a_{k}
Akcos(φk)=ak和
A
k
sin
(
φ
k
)
=
b
k
A_{k}\sin(\varphi_{k}) = b_{k}
Aksin(φk)=bk,得到
f
(
t
)
f(t)
f(t)的傅里叶级数表达式:
f
(
t
)
=
C
+
∑
k
=
1
∞
a
k
sin
(
k
ω
0
t
)
+
∑
k
=
1
∞
b
k
cos
(
k
ω
0
t
)
f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t)
f(t)=C+k=1∑∞aksin(kω0t)+k=1∑∞bkcos(kω0t)
如果上式中的系数 C C C、 a n a_{n} an和 b n b_{n} bn可解,则 f ( t ) f(t) f(t)可分解为一系列简单的三角函数。
我们选择正弦函数
k
k
k中最大的周期
max
(
2
π
k
ω
0
)
=
2
π
ω
0
\max(\frac{2\pi}{k\omega_{0}}) = \frac{2\pi}{\omega_{0}}
max(kω02π)=ω02π作为积分区间(保证所有的三角函数在此区间内积分为
0
0
0)。对
f
(
t
)
f(t)
f(t)的傅里叶级数表达式在
[
0
,
2
π
ω
0
]
[0,\frac{2\pi}{\omega_{0}}]
[0,ω02π]内积分得:
∫
0
2
π
ω
0
f
(
t
)
d
t
=
∫
0
2
π
ω
0
C
d
t
+
∑
k
=
1
∞
a
k
∫
0
2
π
ω
0
sin
(
k
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
∫
0
2
π
ω
0
cos
(
k
ω
0
t
)
d
t
=
C
2
π
ω
0
+
∑
k
=
1
∞
a
k
0
+
∑
k
=
1
∞
b
k
0
=
C
2
π
ω
0
\begin{aligned} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt & = \int_{0}^{\frac{2\pi}{\omega_{0}}}Cdt + \sum_{k=1}^{\infty}a_{k}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)dt \\ & = C\frac{2\pi}{\omega_{0}} + \sum_{k=1}^{\infty}a_{k}0 + \sum_{k=1}^{\infty}b_{k}0 \\ & = C\frac{2\pi}{\omega_{0}} \end{aligned}
∫0ω02πf(t)dt=∫0ω02πCdt+k=1∑∞ak∫0ω02πsin(kω0t)dt+k=1∑∞bk∫0ω02πcos(kω0t)dt=Cω02π+k=1∑∞ak0+k=1∑∞bk0=Cω02π
因此,系数
C
C
C得解:
C
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
d
t
C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt
C=2πω0∫0ω02πf(t)dt
接着
f
(
t
)
f(t)
f(t)的傅里叶级数表达式左右两边同时乘以
cos
(
n
ω
0
t
)
\cos(n\omega_{0} t)
cos(nω0t),得到:
cos
(
n
ω
0
t
)
f
(
t
)
=
C
cos
(
n
ω
0
t
)
+
∑
k
=
1
∞
a
k
sin
(
k
ω
0
t
)
cos
(
n
ω
0
t
)
+
∑
k
=
1
∞
b
k
cos
(
k
ω
0
t
)
cos
(
n
ω
0
t
)
\cos(n\omega_{0} t)f(t) = C\cos(n\omega_{0} t) + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t)\cos(n\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t)\cos(n\omega_{0} t)
cos(nω0t)f(t)=Ccos(nω0t)+k=1∑∞aksin(kω0t)cos(nω0t)+k=1∑∞bkcos(kω0t)cos(nω0t)
对上式在
[
0
,
2
π
ω
0
]
[0,\frac{2\pi}{\omega_{0}}]
[0,ω02π]内积分得:
∫
0
2
π
ω
0
cos
(
n
ω
0
t
)
f
(
t
)
d
t
=
C
∫
0
2
π
ω
0
cos
(
n
ω
0
t
)
d
t
+
∑
k
=
1
∞
a
k
∫
0
2
π
ω
0
sin
(
k
ω
0
t
)
cos
(
n
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
∫
0
2
π
ω
0
cos
(
k
ω
0
t
)
cos
(
n
ω
0
t
)
d
t
=
C
0
+
∑
k
=
1
∞
a
k
∫
0
2
π
ω
0
1
2
[
sin
(
k
ω
0
t
+
n
ω
0
t
)
+
sin
(
k
ω
0
t
−
n
ω
0
t
)
]
d
t
+
∑
k
=
1
∞
b
k
∫
0
2
π
ω
0
1
2
[
cos
(
k
ω
0
t
+
n
ω
0
t
)
+
cos
(
k
ω
0
t
−
n
ω
0
t
)
]
d
t
=
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
sin
(
(
k
+
n
)
ω
0
t
)
d
t
+
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
cos
(
(
k
+
n
)
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
∞
a
k
2
0
+
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
2
0
+
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
n
−
1
a
k
2
∫
0
2
π
ω
0
−
sin
(
(
n
−
k
)
ω
0
t
)
d
t
+
a
n
2
∫
0
2
π
ω
0
sin
(
(
n
−
n
)
ω
0
t
)
d
t
+
∑
k
=
n
+
1
∞
a
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
+
∑
k
=
1
n
−
1
b
k
2
∫
0
2
π
ω
0
cos
(
(
n
−
k
)
ω
0
t
)
d
t
+
b
n
2
∫
0
2
π
ω
0
cos
(
(
n
−
n
)
ω
0
t
)
d
t
+
∑
k
=
n
+
1
∞
b
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
n
−
1
a
k
2
0
+
a
n
2
0
+
∑
k
=
n
+
1
∞
a
k
2
0
+
∑
k
=
1
n
−
1
b
k
2
0
+
b
n
2
∫
0
2
π
ω
0
1
d
t
+
∑
k
=
n
+
1
∞
b
k
2
0
=
b
n
2
2
π
ω
0
\begin{aligned} & \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt = C\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)dt + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)\cos(n\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)\cos(n\omega_{0} t)dt \\ & = C0 + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\sin(k\omega_{0} t+n\omega_{0} t) + \sin(k\omega_{0} t-n\omega_{0} t)]dt \\ & + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\cos(k\omega_{0} t+n\omega_{0} t) + \cos(k\omega_{0} t-n\omega_{0} t)]dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k+n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k+n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}0 + \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt + \sum_{k=1}^{\infty}\frac{b_{k}}{2}0 + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}-\sin((n-k)\omega_{0} t)dt + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & + \sum_{k=1}^{n-1}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-k)\omega_{0} t)dt + \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}0 + \frac{a_{n}}{2}0 + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}0 + \sum_{k=1}^{n-1}\frac{b_{k}}{2}0 + \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}1dt + \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}0 \\ & = \frac{b_{n}}{2}\frac{2\pi}{\omega_{0}} \end{aligned}
∫0ω02πcos(nω0t)f(t)dt=C∫0ω02πcos(nω0t)dt+k=1∑∞ak∫0ω02πsin(kω0t)cos(nω0t)dt+k=1∑∞bk∫0ω02πcos(kω0t)cos(nω0t)dt=C0+k=1∑∞ak∫0ω02π21[sin(kω0t+nω0t)+sin(kω0t−nω0t)]dt+k=1∑∞bk∫0ω02π21[cos(kω0t+nω0t)+cos(kω0t−nω0t)]dt=k=1∑∞2ak∫0ω02πsin((k+n)ω0t)dt+k=1∑∞2ak∫0ω02πsin((k−n)ω0t)dt+k=1∑∞2bk∫0ω02πcos((k+n)ω0t)dt+k=1∑∞2bk∫0ω02πcos((k−n)ω0t)dt=k=1∑∞2ak0+k=1∑∞2ak∫0ω02πsin((k−n)ω0t)dt+k=1∑∞2bk0+k=1∑∞2bk∫0ω02πcos((k−n)ω0t)dt=k=1∑n−12ak∫0ω02π−sin((n−k)ω0t)dt+2an∫0ω02πsin((n−n)ω0t)dt+k=n+1∑∞2ak∫0ω02πsin((k−n)ω0t)dt+k=1∑n−12bk∫0ω02πcos((n−k)ω0t)dt+2bn∫0ω02πcos((n−n)ω0t)dt+k=n+1∑∞2bk∫0ω02πcos((k−n)ω0t)dt=k=1∑n−12ak0+2an0+k=n+1∑∞2ak0+k=1∑n−12bk0+2bn∫0ω02π1dt+k=n+1∑∞2bk0=2bnω02π
因此,系数
b
n
b_{n}
bn得解:
b
n
=
ω
0
π
∫
0
2
π
ω
0
cos
(
n
ω
0
t
)
f
(
t
)
d
t
b_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt
bn=πω0∫0ω02πcos(nω0t)f(t)dt
接着
f
(
t
)
f(t)
f(t)的傅里叶级数表达式左右两边同时乘以
sin
(
n
ω
0
t
)
\sin(n\omega_{0} t)
sin(nω0t),得到:
sin
(
n
ω
0
t
)
f
(
t
)
=
C
sin
(
n
ω
0
t
)
+
∑
k
=
1
∞
a
k
sin
(
k
ω
0
t
)
sin
(
n
ω
0
t
)
+
∑
k
=
1
∞
b
k
cos
(
k
ω
0
t
)
sin
(
n
ω
0
t
)
\sin(n\omega_{0} t)f(t) = C\sin(n\omega_{0} t) + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t)\sin(n\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t)\sin(n\omega_{0} t)
sin(nω0t)f(t)=Csin(nω0t)+k=1∑∞aksin(kω0t)sin(nω0t)+k=1∑∞bkcos(kω0t)sin(nω0t)
对上式在
[
0
,
2
π
ω
0
]
[0,\frac{2\pi}{\omega_{0}}]
[0,ω02π]内积分得:
∫
0
2
π
ω
0
sin
(
n
ω
0
t
)
f
(
t
)
d
t
=
C
∫
0
2
π
ω
0
sin
(
n
ω
0
t
)
d
t
+
∑
k
=
1
∞
a
k
∫
0
2
π
ω
0
sin
(
k
ω
0
t
)
sin
(
n
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
∫
0
2
π
ω
0
cos
(
k
ω
0
t
)
sin
(
n
ω
0
t
)
d
t
=
C
0
+
∑
k
=
1
∞
a
k
∫
0
2
π
ω
0
1
2
[
cos
(
k
ω
0
t
−
n
ω
0
t
)
−
cos
(
k
ω
0
t
+
n
ω
0
t
)
]
d
t
+
∑
k
=
1
∞
b
k
∫
0
2
π
ω
0
1
2
[
sin
(
k
ω
0
t
+
n
ω
0
t
)
−
sin
(
k
ω
0
t
−
n
ω
0
t
)
]
d
t
=
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
−
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
cos
(
(
k
+
n
)
ω
0
t
)
d
t
+
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
sin
(
(
k
+
n
)
ω
0
t
)
d
t
−
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
−
∑
k
=
1
∞
a
k
2
∫
0
2
π
ω
0
0
+
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
0
−
∑
k
=
1
∞
b
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
n
−
1
a
k
2
∫
0
2
π
ω
0
cos
(
(
n
−
k
)
ω
0
t
)
d
t
+
a
n
2
∫
0
2
π
ω
0
cos
(
(
n
−
n
)
ω
0
t
)
d
t
+
∑
k
=
n
+
1
∞
a
k
2
∫
0
2
π
ω
0
cos
(
(
k
−
n
)
ω
0
t
)
d
t
−
∑
k
=
1
n
−
1
b
k
2
∫
0
2
π
ω
0
−
sin
(
(
n
−
k
)
ω
0
t
)
d
t
−
b
n
2
∫
0
2
π
ω
0
sin
(
(
n
−
n
)
ω
0
t
)
d
t
−
∑
k
=
n
+
1
∞
b
k
2
∫
0
2
π
ω
0
sin
(
(
k
−
n
)
ω
0
t
)
d
t
=
∑
k
=
1
n
−
1
a
k
2
0
+
a
n
2
∫
0
2
π
ω
0
1
d
t
+
∑
k
=
n
+
1
∞
a
k
2
0
−
∑
k
=
1
n
−
1
b
k
2
0
−
b
n
2
0
−
∑
k
=
n
+
1
∞
b
k
2
0
=
a
n
2
2
π
ω
0
\begin{aligned} & \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt = C\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)dt + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(k\omega_{0} t)\sin(n\omega_{0} t)dt + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(k\omega_{0} t)\sin(n\omega_{0} t)dt \\ & = C0 + \sum_{k=1}^{\infty}a_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\cos(k\omega_{0} t-n\omega_{0} t) - \cos(k\omega_{0} t+n\omega_{0} t)]dt \\ & + \sum_{k=1}^{\infty}b_{k} \int_{0}^{\frac{2\pi}{\omega_{0}}}\frac{1}{2}[\sin(k\omega_{0} t+n\omega_{0} t) - \sin(k\omega_{0} t-n\omega_{0} t)]dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k+n)\omega_{0} t)dt \\ & + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k+n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt - \sum_{k=1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}0 + \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}0 - \sum_{k=1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-k)\omega_{0} t)dt + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((n-n)\omega_{0} t)dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\cos((k-n)\omega_{0} t)dt \\ & - \sum_{k=1}^{n-1}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}-\sin((n-k)\omega_{0} t)dt - \frac{b_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((n-n)\omega_{0} t)dt - \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}\sin((k-n)\omega_{0} t)dt \\ & = \sum_{k=1}^{n-1}\frac{a_{k}}{2}0 + \frac{a_{n}}{2}\int_{0}^{\frac{2\pi}{\omega_{0}}}1dt + \sum_{k=n+1}^{\infty}\frac{a_{k}}{2}0 - \sum_{k=1}^{n-1}\frac{b_{k}}{2}0 - \frac{b_{n}}{2}0 - \sum_{k=n+1}^{\infty}\frac{b_{k}}{2}0 \\ & = \frac{a_{n}}{2}\frac{2\pi}{\omega_{0}} \end{aligned}
∫0ω02πsin(nω0t)f(t)dt=C∫0ω02πsin(nω0t)dt+k=1∑∞ak∫0ω02πsin(kω0t)sin(nω0t)dt+k=1∑∞bk∫0ω02πcos(kω0t)sin(nω0t)dt=C0+k=1∑∞ak∫0ω02π21[cos(kω0t−nω0t)−cos(kω0t+nω0t)]dt+k=1∑∞bk∫0ω02π21[sin(kω0t+nω0t)−sin(kω0t−nω0t)]dt=k=1∑∞2ak∫0ω02πcos((k−n)ω0t)dt−k=1∑∞2ak∫0ω02πcos((k+n)ω0t)dt+k=1∑∞2bk∫0ω02πsin((k+n)ω0t)dt−k=1∑∞2bk∫0ω02πsin((k−n)ω0t)dt=k=1∑∞2ak∫0ω02πcos((k−n)ω0t)dt−k=1∑∞2ak∫0ω02π0+k=1∑∞2bk∫0ω02π0−k=1∑∞2bk∫0ω02πsin((k−n)ω0t)dt=k=1∑n−12ak∫0ω02πcos((n−k)ω0t)dt+2an∫0ω02πcos((n−n)ω0t)dt+k=n+1∑∞2ak∫0ω02πcos((k−n)ω0t)dt−k=1∑n−12bk∫0ω02π−sin((n−k)ω0t)dt−2bn∫0ω02πsin((n−n)ω0t)dt−k=n+1∑∞2bk∫0ω02πsin((k−n)ω0t)dt=k=1∑n−12ak0+2an∫0ω02π1dt+k=n+1∑∞2ak0−k=1∑n−12bk0−2bn0−k=n+1∑∞2bk0=2anω02π
因此,系数
a
n
a_{n}
an得解:
a
n
=
ω
0
π
∫
0
2
π
ω
0
sin
(
n
ω
0
t
)
f
(
t
)
d
t
a_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt
an=πω0∫0ω02πsin(nω0t)f(t)dt
至此,已经得到傅里叶级数中各系数的表达式(如下),只要它们可积分,即
C
C
C、
a
n
a_{n}
an和
b
n
b_{n}
bn可解,那么就得到了函数
f
(
t
)
f(t)
f(t)的傅里叶级数。
f
(
t
)
=
C
+
∑
k
=
1
∞
a
k
sin
(
k
ω
0
t
)
+
∑
k
=
1
∞
b
k
cos
(
k
ω
0
t
)
{
C
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
d
t
a
n
=
ω
0
π
∫
0
2
π
ω
0
sin
(
n
ω
0
t
)
f
(
t
)
d
t
b
n
=
ω
0
π
∫
0
2
π
ω
0
cos
(
n
ω
0
t
)
f
(
t
)
d
t
f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t) \\ \begin{cases} C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt \\ a_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\sin(n\omega_{0} t)f(t)dt \\ b_{n} = \frac{\omega_{0}}{\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}\cos(n\omega_{0} t)f(t)dt \end{cases}
f(t)=C+k=1∑∞aksin(kω0t)+k=1∑∞bkcos(kω0t)⎩⎪⎪⎨⎪⎪⎧C=2πω0∫0ω02πf(t)dtan=πω0∫0ω02πsin(nω0t)f(t)dtbn=πω0∫0ω02πcos(nω0t)f(t)dt
傅里叶级数的复数形式
为此,我们需要引入欧拉公式。其构建了三角函数和复数之间的桥梁,如下:
e
i
x
=
cos
x
+
i
sin
x
e^{ix} = \cos x + i\sin x
eix=cosx+isinx
其中,
i
=
−
1
i = \sqrt{-1}
i=−1。替换上式中的
x
x
x为
−
x
-x
−x,得到
e
−
i
x
=
cos
−
x
+
i
sin
−
x
=
cos
x
−
i
sin
x
e^{-ix} = \cos -x + i\sin -x = \cos x - i\sin x
e−ix=cos−x+isin−x=cosx−isinx。得到:
{
cos
x
=
e
i
x
+
e
−
i
x
2
sin
x
=
e
i
x
−
e
−
i
x
2
i
\begin{cases} \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \end{cases}
{cosx=2eix+e−ixsinx=2ieix−e−ix
将上式代入三角函数形式的傅里叶级数中:
f
(
t
)
=
C
+
∑
k
=
1
∞
a
k
sin
(
k
ω
0
t
)
+
∑
k
=
1
∞
b
k
cos
(
k
ω
0
t
)
=
C
+
∑
k
=
1
∞
(
a
k
e
i
k
ω
0
t
−
e
−
i
k
ω
0
t
2
i
+
b
k
e
i
k
ω
0
t
+
e
−
i
k
ω
0
t
2
)
=
C
+
∑
k
=
1
∞
(
a
k
2
i
e
i
k
ω
0
t
−
a
k
2
i
e
−
i
k
ω
0
t
+
b
k
2
e
i
k
ω
0
t
+
b
k
2
e
−
i
k
ω
0
t
)
=
C
+
∑
k
=
1
∞
(
−
i
a
k
2
e
i
k
ω
0
t
+
i
a
k
2
e
−
i
k
ω
0
t
+
b
k
2
e
i
k
ω
0
t
+
b
k
2
e
−
i
k
ω
0
t
)
=
C
+
∑
k
=
1
∞
b
k
−
i
a
k
2
e
i
k
ω
0
t
+
∑
k
=
1
∞
b
k
+
i
a
k
2
e
−
i
k
ω
0
t
=
C
e
i
0
ω
0
t
+
∑
k
=
1
∞
b
k
−
i
a
k
2
e
i
k
ω
0
t
+
∑
j
=
−
1
−
∞
b
−
j
+
i
a
−
j
2
e
i
j
ω
0
t
\begin{aligned} & f(t) = C + \sum_{k=1}^{\infty}a_{k}\sin(k\omega_{0} t) + \sum_{k=1}^{\infty}b_{k}\cos(k\omega_{0} t) \\ & = C + \sum_{k=1}^{\infty}(a_{k}\frac{e^{ik\omega_{0} t}-e^{-ik\omega_{0} t}}{2i} + b_{k}\frac{e^{ik\omega_{0} t}+e^{-ik\omega_{0} t}}{2}) \\ & = C + \sum_{k=1}^{\infty}(\frac{a_{k}}{2i}e^{ik\omega_{0} t} - \frac{a_{k}}{2i}e^{-ik\omega_{0} t} + \frac{b_{k}}{2}e^{ik\omega_{0} t} + \frac{b_{k}}{2}e^{-ik\omega_{0} t}) \\ & = C + \sum_{k=1}^{\infty}(-\frac{ia_{k}}{2}e^{ik\omega_{0} t} + \frac{ia_{k}}{2}e^{-ik\omega_{0} t} + \frac{b_{k}}{2}e^{ik\omega_{0} t} + \frac{b_{k}}{2}e^{-ik\omega_{0} t}) \\ & = C + \sum_{k=1}^{\infty}\frac{b_{k}-ia_{k}}{2}e^{ik\omega_{0} t} + \sum_{k=1}^{\infty}\frac{b_{k}+ia_{k}}{2}e^{-ik\omega_{0} t} \\ & = Ce^{i0\omega_{0} t} + \sum_{k=1}^{\infty}\frac{b_{k}-ia_{k}}{2}e^{ik\omega_{0} t} + \sum_{j=-1}^{-\infty}\frac{b_{-j}+ia_{-j}}{2}e^{ij\omega_{0} t} \end{aligned}
f(t)=C+k=1∑∞aksin(kω0t)+k=1∑∞bkcos(kω0t)=C+k=1∑∞(ak2ieikω0t−e−ikω0t+bk2eikω0t+e−ikω0t)=C+k=1∑∞(2iakeikω0t−2iake−ikω0t+2bkeikω0t+2bke−ikω0t)=C+k=1∑∞(−2iakeikω0t+2iake−ikω0t+2bkeikω0t+2bke−ikω0t)=C+k=1∑∞2bk−iakeikω0t+k=1∑∞2bk+iake−ikω0t=Cei0ω0t+k=1∑∞2bk−iakeikω0t+j=−1∑−∞2b−j+ia−jeijω0t
观察上式,可以得到傅里叶级数的复数形式:
f
(
t
)
=
∑
k
=
−
∞
∞
X
k
e
i
k
ω
0
t
f(t) = \sum_{k=-\infty}^{\infty}X_{k}e^{ik\omega_{0} t}
f(t)=k=−∞∑∞Xkeikω0t
k
≥
1
k \ge 1
k≥1时:
X
k
=
b
k
−
i
a
k
2
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
(
cos
(
k
ω
0
t
)
−
i
sin
(
k
ω
0
t
)
)
d
t
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
e
−
i
k
ω
0
t
d
t
X_{k} = \frac{b_{k}-ia_{k}}{2} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)(\cos(k\omega_{0} t)-i\sin(k\omega_{0} t))dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt
Xk=2bk−iak=2πω0∫0ω02πf(t)(cos(kω0t)−isin(kω0t))dt=2πω0∫0ω02πf(t)e−ikω0tdt
k
=
0
k = 0
k=0时:
X
k
=
C
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
d
t
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
e
−
i
0
ω
0
t
d
t
X_{k} = C = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-i0\omega_{0} t}dt
Xk=C=2πω0∫0ω02πf(t)dt=2πω0∫0ω02πf(t)e−i0ω0tdt
k
≤
−
1
k \le -1
k≤−1时,令
j
=
−
k
j=-k
j=−k:
X
k
=
b
−
k
+
i
a
−
k
2
=
b
j
+
i
a
j
2
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
(
cos
(
j
ω
0
t
)
+
i
sin
(
j
ω
0
t
)
)
d
t
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
e
i
j
ω
0
t
d
t
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
e
−
i
k
ω
0
t
d
t
\begin{aligned} & X_{k} = \frac{b_{-k}+ia_{-k}}{2} = \frac{b_{j}+ia_{j}}{2} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)(\cos(j\omega_{0} t)+i\sin(j\omega_{0} t))dt \\ & = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{ij\omega_{0} t}dt = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt \end{aligned}
Xk=2b−k+ia−k=2bj+iaj=2πω0∫0ω02πf(t)(cos(jω0t)+isin(jω0t))dt=2πω0∫0ω02πf(t)eijω0tdt=2πω0∫0ω02πf(t)e−ikω0tdt
至此,已经得到复数形式的傅里叶级数中系数的表达式(如下),只要它们可积分,即
X
k
X_{k}
Xk可解,那么就得到了函数
f
(
t
)
f(t)
f(t)的复数形式的傅里叶级数。
f
(
t
)
=
∑
k
=
−
∞
∞
X
k
e
i
k
ω
0
t
f(t) = \sum_{k=-\infty}^{\infty}X_{k}e^{ik\omega_{0} t}
f(t)=k=−∞∑∞Xkeikω0t
其中,
X
n
=
ω
0
2
π
∫
0
2
π
ω
0
f
(
t
)
e
−
i
n
ω
0
t
d
t
X_{n} = \frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-in\omega_{0} t}dt
Xn=2πω0∫0ω02πf(t)e−inω0tdt。