Bootstrap

Keras模型训练的断点续训、早停、效果可视化

训练:model.fit()函数

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, 
validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, 
sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1)
x:输入数据。如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array
y:标签,numpy array
batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个batch的样本会被计算一次梯度下降,使目标函数优化一步
epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止,当没有设置initial_epoch时,它就是训练的总轮数,否则训练的总轮数为epochs - inital_epoch
verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
callbacks:list,其中的元素是keras.callbacks.Callback的对象。这个list中的回调函数将会在训练过程中的适当时机被调用,参考回调函数
validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。注意,validation_split的划分在shuffle之前,因此如果你的数据本身是有序的,需要先手工打乱再指定validation_split,否则可能会出现验证集样本不均匀
validation_data:形式为(X,y)的tuple,是指定的验证集。此参数将覆盖validation_spilt
shuffle:布尔值或字符串,一般为布尔值,表示是否在训练过程中随机打乱输入样本的顺序。若为字符串“batch”,则是用来处理HDF5数据的特殊情况,它将在batch内部将数据打乱
class_weight:字典,将不同的类别映射为不同的权值,该参数用来在训练过程中调整损失函数(只能用于训练)
sample_weight:权值的numpy array,用于在训练时调整损失函数(仅用于训练)。可以传递一个1D的与样本等长的向量用于对样本进行1对1的加权,或者在面对时序数据时,传递一个的形式为(samples,sequence_length)的矩阵来为每个时间步上的样本赋不同的权。这种情况下请确定在编译模型时添加了sample_weight_mode=’temporal’
initial_epoch: 从该参数指定的epoch开始训练,在继续之前的训练时有用

效果可视化:keras.callbacks.History()函数

fit()函数训练时默认调用History函数,每轮训练收集损失和准确率,返回一个history的对象,其history.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况

# 查看history对象中收集的数据
print(history.history.keys())
['acc', 'loss', 'val_acc', 'val_loss']

以此绘制训练精度/损失曲线图,观察:

  • 模型收敛的速度(斜率)
  • 模型是否已经收敛(稳定性)
  • 模型是否过拟合(验证数据集)
# Visualize training history
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy
# Fix random seed for reproducibility
numpy.random.seed(7)
# Load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# Split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# Create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
history = model.fit(X, Y, validation_split=0.33, nb_epoch=150, batch_size=10, verbose=0) # List all data in history
print(history.history.keys())
# Summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('mo
;