Bootstrap

基于pytorch的 保存和加载模型参数

当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了。

保存和加载模型参数有两种方式:

方式一:

 

torch.save(net.state_dict(),path):

功能:保存训练完的网络的各层参数(即weights和bias)

其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth)

 

net2.load_state_dict(torch.load(path)):

功能:加载保存到path中的各层参数到神经网络

注意:不可以直接为torch.load_state_dict(path),此函数不能直接接收字符串类型参数

 

方式二:

 

torch.save(net,path):

功能:保存训练完的整个网络模型(不止weights和bias)

 

net2=torch.load(path):

功能:加载保存到path中的整个神经网络

 

说明:官方推荐方式一,原因自然是保存的内容少,速度会更快。

 

;