Bootstrap

Jetpack之Lifecycle原理分析

Jetpack之Lifecycle原理分析

一、Lifecycle介绍

1.1 、Lifecycle是什么?

Lifecycle是Jetpack库中架构组件中的一个,可以用来帮助开发者创建可感知生命周期的组件。

生命周期感知型组件可执行操作来响应另一个组件(如 Activity 和 Fragment)的生命周期状态的变化。这些组件有助于我们写出更有条理且往往更精简的代码,这样的代码更易于维护。

Lifecycle是一个用来存储有关组件(如 Activity 和 Fragment)的生命周期状态信息的类,并且允许其他对象观察此状态。

简单的说,Lifecycle能让我们非常方便的监听到(或者说是观察到)相关组件的生命周期状态信息和变化。

1.2 为什么要用Lifecycle?

在上面我们已经说过,方便感知相关组件(如 Activity 和 Fragment)的生命周期。但是,这并不是我们要用Lifecycle的主要原因,因为我们在Activity的生命周期回调方法中,同样可以处理我们的相关逻辑。比如我们获取位置的一个例子:常见的响应生命周期的方式,是主动的在生命周期方法onStart()中调用我们的开始定位start()方法。

public class MyLocationListener {

    public MyLocationListener(Context context, LocationCallback callback) {

    }
  
    void start() {

    }

    void stop() {

    }

}

public class MainActivity extends AppCompatActivity {

    private MyLocationListener myLocationListener;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        myLocationListener = new MyLocationListener(this, location -> {
            //update UI
        });
    }

    @Override
    protected void onStart() {
        super.onStart();
        myLocationListener.start();
    }

    @Override
    protected void onStop() {
        super.onStop();
        myLocationListener.stop();
    }
}

在这里插入图片描述

但是会存在下面的一些问题:

  1. 如果组件越来越多,会导致大量的业务组件调用代码存在生命周期回调方法中,耦合太高,难以维护。
  2. 我们无法保证组件的调用会在activity/Fragment 停止之前执行,也就是说,onStop()方法会在onStart()方法之前结束,会导致组件存留时间比实际需要时间长,可能会引起内存泄露(见下面的测试代码)。
public class MainActivity extends AppCompatActivity {

    private MyLocationListener myLocationListener;
    private TextView tvHello;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        tvHello = findViewById(R.id.tv_hello);
        myLocationListener = new MyLocationListener(this, location -> {
            //update UI
        });
    }

    @Override
    protected void onStart() {
        super.onStart();
      	//用延迟来表示条件满足后才开始执行 start()方法
        tvHello.postDelayed(() -> myLocationListener.start(), 1000 * 4);
        tvHello.postDelayed(MainActivity.this::finish, 1000 * 2);
    }

    @Override
    protected void onStop() {
        super.onStop();
        myLocationListener.stop();
    }
}

在这里插入图片描述

所以,我们希望一些依赖系统组件生命周期执行的自定义组件,能够不再依赖生命周期方法的回调,同时在系统组件生命周期发生变化时,我们也能够及时的收到通知,做出响应,即在组件间解耦同时又能响应生命周期变化。为此,Google提供了LifeCycle这样一种解决方案。

二、Lifecycle的使用

1.简单使用

我们还是使用定位的例子,实现LifecycleObserver这样一个接口,在我们需要监听生命周期事件的方法上,加上**@OnLifecycleEvent(Lifecycle.Event.XXX)**事件注解。

public class MyLocationListener2 implements LifecycleObserver {
    public MyLocationListener2(Context context, LocationCallback callback) {}
  
    @OnLifecycleEvent(Lifecycle.Event.ON_START)
    void start() {
        Log.i("MyLocationListener2:", "start()");
    }
  
    @OnLifecycleEvent(Lifecycle.Event.ON_STOP)
    void stop() {
        Log.i("MyLocationListener2:", "stop()");
    }
}

在我们MainActivity中通过 getLifecycle().addObserver()方法,将我们的MyLocationListener2对象作为观察者进行注册。

public class MainActivity extends AppCompatActivity {
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        
        getLifecycle().addObserver(new MyLocationListener2(this, location -> {
            //update UI
        }));
    }
   
}

我们可以在Activity生命周期发生变化时,自动的执行我们要执行的代码。如果我们要监听其他状态,只需要在MyLocationListener2中增加事件或修改事件类型,这样使组件间耦合降到了最低。
在这里插入图片描述

三、Lifecycle源码解析

LifecycleObserver:

LifecycleObserver 是一个接口,没有任何方法,可以理解为用来标记生命周期观察者,当我们的自定义组件需要监听到生命周期时,需要实现该接口。

LifecycleOwner:

lifecycleOwner 同样是一个接口,用来声明具有生命周期的类,提供了getLifecycle()方法来获取其Lifecycle对象

/**
 * A class that has an Android lifecycle. These events can be used by custom components to
 * handle lifecycle changes without implementing any code inside the Activity or the Fragment.
 *
 * @see Lifecycle
 * @see ViewTreeLifecycleOwner
 */
@SuppressWarnings({"WeakerAccess", "unused"})
public interface LifecycleOwner {
    /**
     * Returns the Lifecycle of the provider.
     *
     * @return The lifecycle of the provider.
     */
    @NonNull
    Lifecycle getLifecycle();
}
Lifecycle:

Lifecycle 是一个抽象类,可以理解为表示具体的生命周期对象,每个 LifecycleOwner 都会持有 Lifecycle 对象。通过 Lifecycle 我们可以获取当前生命周期状态,添加/删除 生命周期观察者等等。Lifecycle内部有三个抽象方法、两个枚举类和一个变量。其中EventState分别表示生命周期事件和生命周期状态。

public abstract class Lifecycle {
    /**
     * Lifecycle coroutines extensions stashes the CoroutineScope into this field.
     *
     * @hide used by lifecycle-common-ktx
     */
    @RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
    @NonNull
    AtomicReference<Object> mInternalScopeRef = new AtomicReference<>();

    /**
     * Adds a LifecycleObserver that will be notified when the LifecycleOwner changes
     * state.
     * <p>
     * The given observer will be brought to the current state of the LifecycleOwner.
     * For example, if the LifecycleOwner is in {@link State#STARTED} state, the given observer
     * will receive {@link Event#ON_CREATE}, {@link Event#ON_START} events.
     *
     * @param observer The observer to notify.
     */
    @MainThread
    public abstract void addObserver(@NonNull LifecycleObserver observer);

    /**
     * Removes the given observer from the observers list.
     * <p>
     * If this method is called while a state change is being dispatched,
     * <ul>
     * <li>If the given observer has not yet received that event, it will not receive it.
     * <li>If the given observer has more than 1 method that observes the currently dispatched
     * event and at least one of them received the event, all of them will receive the event and
     * the removal will happen afterwards.
     * </ul>
     *
     * @param observer The observer to be removed.
     */
    @MainThread
    public abstract void removeObserver(@NonNull LifecycleObserver observer);

    /**
     * Returns the current state of the Lifecycle.
     *
     * @return The current state of the Lifecycle.
     */
    @MainThread
    @NonNull
    public abstract State getCurrentState();

    @SuppressWarnings("WeakerAccess")
    public enum Event {
        /**
         * Constant for onCreate event of the {@link LifecycleOwner}.
         */
        ON_CREATE,
        /**
         * Constant for onStart event of the {@link LifecycleOwner}.
         */
        ON_START,
        /**
         * Constant for onResume event of the {@link LifecycleOwner}.
         */
        ON_RESUME,
        /**
         * Constant for onPause event of the {@link LifecycleOwner}.
         */
        ON_PAUSE,
        /**
         * Constant for onStop event of the {@link LifecycleOwner}.
         */
        ON_STOP,
        /**
         * Constant for onDestroy event of the {@link LifecycleOwner}.
         */
        ON_DESTROY,
        /**
         * An {@link Event Event} constant that can be used to match all events.
         */
        ON_ANY;
      
      //......
    }

    /**
     * Lifecycle states. You can consider the states as the nodes in a graph and
     * {@link Event}s as the edges between these nodes.
     */
    @SuppressWarnings("WeakerAccess")
    public enum State {
        /**
         * Destroyed state for a LifecycleOwner. After this event, this Lifecycle will not dispatch
         * any more events. For instance, for an {@link android.app.Activity}, this state is reached
         * <b>right before</b> Activity's {@link android.app.Activity#onDestroy() onDestroy} call.
         */
        DESTROYED,

        /**
         * Initialized state for a LifecycleOwner. For an {@link android.app.Activity}, this is
         * the state when it is constructed but has not received
         * {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} yet.
         */
        INITIALIZED,

        /**
         * Created state for a LifecycleOwner. For an {@link android.app.Activity}, this state
         * is reached in two cases:
         * <ul>
         *     <li>after {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} call;
         *     <li><b>right before</b> {@link android.app.Activity#onStop() onStop} call.
         * </ul>
         */
        CREATED,

        /**
         * Started state for a LifecycleOwner. For an {@link android.app.Activity}, this state
         * is reached in two cases:
         * <ul>
         *     <li>after {@link android.app.Activity#onStart() onStart} call;
         *     <li><b>right before</b> {@link android.app.Activity#onPause() onPause} call.
         * </ul>
         */
        STARTED,

        /**
         * Resumed state for a LifecycleOwner. For an {@link android.app.Activity}, this state
         * is reached after {@link android.app.Activity#onResume() onResume} is called.
         */
        RESUMED;
        /**
         * Compares if this State is greater or equal to the given {@code state}.
         *
         * @param state State to compare with
         * @return true if this State is greater or equal to the given {@code state}
         */
        public boolean isAtLeast(@NonNull State state) {
            return compareTo(state) >= 0;
        }
    }

下面以Activity 为例来分析:

1.观察者如何注册?

在上面说到,我们在MainActivity中通过 getLifecycle().addObserver()将我们的组件进行了注册。我们看下代码具体做了什么。首先看下gelifecycle()方法:

ComponentActivity.java


private final LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
//.....
/**
 * {@inheritDoc}
 * <p>
 * Overriding this method is no longer supported and this method will be made
 * <code>final</code> in a future version of ComponentActivity. If you do override
 * this method, you <code>must</code>:
 * <ol>
 *     <li>Return an instance of {@link LifecycleRegistry}</li>
 *     <li>Lazily initialize your LifecycleRegistry object when this is first called.
 *     Note that this method will be called in the super classes' constructor, before any
 *     field initialization or object state creation is complete.</li>
 * </ol>
 */
@NonNull
@Override
public Lifecycle getLifecycle() {
    return mLifecycleRegistry;
}

getLifecycle()方法返回的是LifecycleRegistry类的实例对象mLifecycleRegistryLifecycleRegistryLifecycle的一个实现,我们在开发中接触的最多的其实是它。现在,我们接着看看addObserver()方法是如何保存我们的观察者的,在LifecycleRegistry中对该方法进行了具体的实现:

@Override
public void addObserver(@NonNull LifecycleObserver observer) {
    enforceMainThreadIfNeeded("addObserver");
    State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
    ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
    ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);

    if (previous != null) {
        return;
    }
    LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
    if (lifecycleOwner == null) {
        // it is null we should be destroyed. Fallback quickly
        return;
    }

    boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
    State targetState = calculateTargetState(observer);
    mAddingObserverCounter++;
    while ((statefulObserver.mState.compareTo(targetState) < 0
            && mObserverMap.contains(observer))) {
        pushParentState(statefulObserver.mState);
        final Event event = Event.upFrom(statefulObserver.mState);
        if (event == null) {
            throw new IllegalStateException("no event up from " + statefulObserver.mState);
        }
        statefulObserver.dispatchEvent(lifecycleOwner, event);
        popParentState();
        // mState / subling may have been changed recalculate
        targetState = calculateTargetState(observer);
    }

    if (!isReentrance) {
        // we do sync only on the top level.
        sync();
    }
    mAddingObserverCounter--;
}

static class ObserverWithState {
    State mState;
    LifecycleEventObserver mLifecycleObserver;

    ObserverWithState(LifecycleObserver observer, State initialState) {
        mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
        mState = initialState;
    }

    void dispatchEvent(LifecycleOwner owner, Event event) {
        State newState = event.getTargetState();
        mState = min(mState, newState);
        mLifecycleObserver.onStateChanged(owner, event);
        mState = newState;
    }
}

上面的代码中会将observer和初始状态initialState包装到ObserverWithState类的对象,mObserverMapFastSafeIterableMap类的一个实例,是一个可以在遍历中删除元素的集合,采用链表实现,同时支持键值存储。关于FastSafeIterableMap可以看下这篇文章。然后将包装类保存到mObserverMap集合中。接下来,代码通过calculateTargetState()方法计算出当前状态targetState,如果当前的观察者的初始状态 小于 targetState,则对观察者进行状态同步,下发状态变更事件。到这里,我们的观察者就已经注册完成了。

2.生命周期事件是如何分发的?

在完成生命周期观察者的注册后,那么被观察者是如何将生命周期的变化通知观察者的呢?在介绍LifecycleOwner的时候,我们知道要实现该类来表示一个类具有Android生命周期,Activity也是如此,我们可以找到ComponentActivity。在onCreate()方法中,我们可以看到下面这个:

@Override
protected void onCreate(@Nullable Bundle savedInstanceState) {
    // Restore the Saved State first so that it is available to
    // OnContextAvailableListener instances
    mSavedStateRegistryController.performRestore(savedInstanceState);
    mContextAwareHelper.dispatchOnContextAvailable(this);
    super.onCreate(savedInstanceState);
    ReportFragment.injectIfNeededIn(this);
    if (mContentLayoutId != 0) {
        setContentView(mContentLayoutId);
    }
}

代码创建了一个ReportFragment,它是一个没有UI的空白Fragment。看到这个,接着进入ReportFragment的内部源码,我们应该知道到了ReportFragment才是生命周期分发的地方。

ReportFragment.java

@Override
public void onActivityCreated(Bundle savedInstanceState) {
    super.onActivityCreated(savedInstanceState);
    dispatchCreate(mProcessListener);
    dispatch(Lifecycle.Event.ON_CREATE);
}

@Override
public void onStart() {
    super.onStart();
    dispatchStart(mProcessListener);
    dispatch(Lifecycle.Event.ON_START);
}

@Override
public void onResume() {
    super.onResume();
    dispatchResume(mProcessListener);
    dispatch(Lifecycle.Event.ON_RESUME);
}

@Override
public void onPause() {
    super.onPause();
    dispatch(Lifecycle.Event.ON_PAUSE);
}

@Override
public void onStop() {
    super.onStop();
    dispatch(Lifecycle.Event.ON_STOP);
}

@Override
public void onDestroy() {
    super.onDestroy();
    dispatch(Lifecycle.Event.ON_DESTROY);
    // just want to be sure that we won't leak reference to an activity
    mProcessListener = null;
}

private void dispatch(@NonNull Lifecycle.Event event) {
    if (Build.VERSION.SDK_INT < 29) {
        // Only dispatch events from ReportFragment on API levels prior
        // to API 29. On API 29+, this is handled by the ActivityLifecycleCallbacks
        // added in ReportFragment.injectIfNeededIn
        dispatch(getActivity(), event);
    }
}

static void dispatch(@NonNull Activity activity, @NonNull Lifecycle.Event event) {
        if (activity instanceof LifecycleRegistryOwner) {
            ((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
            return;
        }

        if (activity instanceof LifecycleOwner) {
            Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
            if (lifecycle instanceof LifecycleRegistry) {
                ((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
            }
        }
    }

通过创建一个空白Fragment,然后在Fragment的生命周期方法中去分发生命周期事件。接着看dispatch(getActivity(), event)的调用,其实调用的还是LifecycleRegistryhandleLifecycleEvent()方法。

LifecycleRegistry.java

/**
 * Sets the current state and notifies the observers.
 * <p>
 * Note that if the {@code currentState} is the same state as the last call to this method,
 * calling this method has no effect.
 *
 * @param event The event that was received
 */
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
    enforceMainThreadIfNeeded("handleLifecycleEvent");
    moveToState(event.getTargetState());
}
private void moveToState(State next) {
        if (mState == next) {
            return;
        }
        mState = next;
        if (mHandlingEvent || mAddingObserverCounter != 0) {
            mNewEventOccurred = true;
            // we will figure out what to do on upper level.
            return;
        }
        mHandlingEvent = true;
        sync();
        mHandlingEvent = false;
}

Lifecycle.java

/**
 * Returns the new {@link Lifecycle.State} of a {@link Lifecycle} that just reported
 * this {@link Lifecycle.Event}.
 *
 * Throws {@link IllegalArgumentException} if called on {@link #ON_ANY}, as it is a special
 * value used by {@link OnLifecycleEvent} and not a real lifecycle event.
 *
 * @return the state that will result from this event
 */
@NonNull
public State getTargetState() {
    switch (this) {
        case ON_CREATE:
        case ON_STOP:
            return State.CREATED;
        case ON_START:
        case ON_PAUSE:
            return State.STARTED;
        case ON_RESUME:
            return State.RESUMED;
        case ON_DESTROY:
            return State.DESTROYED;
        case ON_ANY:
            break;
    }
    throw new IllegalArgumentException(this + " has no target state");
}

LifecycleRegistry中接着调用moveToState(event.getTargetState())event.getTargetState()是根据声明周期事件取得对应的状态。,然后更新当前mState状态,下面调用 sync()更新观察者状态:

LifecycleRegistry.java

// happens only on the top of stack (never in reentrance),
// so it doesn't have to take in account parents
private void sync() {
    LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
    if (lifecycleOwner == null) {
        throw new IllegalStateException("LifecycleOwner of this LifecycleRegistry is already"
                + "garbage collected. It is too late to change lifecycle state.");
    }
    while (!isSynced()) {
        mNewEventOccurred = false;
        // no need to check eldest for nullability, because isSynced does it for us.
        // 如果 mState 小于 mObserverMap 中的状态值,调用 backwardPass()
        if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
            backwardPass(lifecycleOwner);
        }
        Map.Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
       // 如果 mState 大于 mObserverMap 中的状态值,调用 forwardPass()
        if (!mNewEventOccurred && newest != null
                && mState.compareTo(newest.getValue().mState) > 0) {
            forwardPass(lifecycleOwner);
        }
    }
    mNewEventOccurred = false;
}

更新之前,首先判断Activity是否已经回收销毁,然后mObserverMap中获取观察开始更新,这里分为两个操作: backwardPass()forwardPass()

  • 如果 mState 小于 mObserverMap 中的状态值,调用 backwardPass()

  • 如果 mState 大于 mObserverMap 中的状态值,调用 forwardPass()

先看下backwardPass()方法:

LifecycleRegistry.java

private void backwardPass(LifecycleOwner lifecycleOwner) {
    Iterator<Map.Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
            mObserverMap.descendingIterator();
    while (descendingIterator.hasNext() && !mNewEventOccurred) {
        Map.Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
        ObserverWithState observer = entry.getValue();
        // 向下传递事件,直到 observer 的状态值等于当前状态值
        while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
                && mObserverMap.contains(entry.getKey()))) {
            Event event = Event.downFrom(observer.mState);
            if (event == null) {
                throw new IllegalStateException("no event down from " + observer.mState);
            }
            pushParentState(event.getTargetState());
            observer.dispatchEvent(lifecycleOwner, event);
            popParentState();
        }
    }
}

backwardPass() 会同步 mObserverMap 中的所有观察者到指定生命周期状态,期间每个状态都会依次分发(状态不会跳跃)。分发生命周期事件最终调用到ObserverWithStatedispatchEvent() 方法。

LifecycleRegistry.java

static class ObserverWithState {
        State mState;
        LifecycleEventObserver mLifecycleObserver;

        ObserverWithState(LifecycleObserver observer, State initialState) {
            mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
            mState = initialState;
        }

        void dispatchEvent(LifecycleOwner owner, Event event) {
            State newState = event.getTargetState();
            mState = min(mState, newState);
            mLifecycleObserver.onStateChanged(owner, event);
            mState = newState;
        }
    }

接着调用 mLifecycleObserver.onStateChanged()方法,mLifecycleObserver是我们在注册观察者的时候在ObserverWithState构造方法中通过Lifecycling.lifecycleEventObserver(observer)生成的,我们进入看下:

Lifecycling.java

@NonNull
static LifecycleEventObserver lifecycleEventObserver(Object object) {
    boolean isLifecycleEventObserver = object instanceof LifecycleEventObserver;
    boolean isFullLifecycleObserver = object instanceof FullLifecycleObserver;
    if (isLifecycleEventObserver && isFullLifecycleObserver) {
        return new FullLifecycleObserverAdapter((FullLifecycleObserver) object,
                (LifecycleEventObserver) object);
    }
    if (isFullLifecycleObserver) {
        return new FullLifecycleObserverAdapter((FullLifecycleObserver) object, null);
    }

    if (isLifecycleEventObserver) {
        return (LifecycleEventObserver) object;
    }

    final Class<?> klass = object.getClass();
    int type = getObserverConstructorType(klass);
    if (type == GENERATED_CALLBACK) {
        List<Constructor<? extends GeneratedAdapter>> constructors =
                sClassToAdapters.get(klass);
        if (constructors.size() == 1) {
            GeneratedAdapter generatedAdapter = createGeneratedAdapter(
                    constructors.get(0), object);
            return new SingleGeneratedAdapterObserver(generatedAdapter);
        }
        GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
        for (int i = 0; i < constructors.size(); i++) {
            adapters[i] = createGeneratedAdapter(constructors.get(i), object);
        }
        return new CompositeGeneratedAdaptersObserver(adapters);
    }
    return new ReflectiveGenericLifecycleObserver(object);
}

我们创建生命周期观察者时继承的LifecycleObserver接口,所以我们直接看getObserverConstructorType()`方法:

Lifecycling.java

private static int getObserverConstructorType(Class<?> klass) {
    Integer callbackCache = sCallbackCache.get(klass);
    if (callbackCache != null) {
        return callbackCache;
    }
    int type = resolveObserverCallbackType(klass);
    sCallbackCache.put(klass, type);
    return type;
}

private static int resolveObserverCallbackType(Class<?> klass) {
    // anonymous class bug:35073837
    if (klass.getCanonicalName() == null) {
        return REFLECTIVE_CALLBACK;
    }

    Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass);
    if (constructor != null) {
        sClassToAdapters.put(klass, Collections
                .<Constructor<? extends GeneratedAdapter>>singletonList(constructor));
        return GENERATED_CALLBACK;
    }
		//如果类中存在被OnLifecycleEvent注解标记的方法,返回的是true
    boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
    if (hasLifecycleMethods) {
        return REFLECTIVE_CALLBACK;
    }

    Class<?> superclass = klass.getSuperclass();
    List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null;
    if (isLifecycleParent(superclass)) {
        if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
            return REFLECTIVE_CALLBACK;
        }
        adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
    }

    for (Class<?> intrface : klass.getInterfaces()) {
        if (!isLifecycleParent(intrface)) {
            continue;
        }
        if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
            return REFLECTIVE_CALLBACK;
        }
        if (adapterConstructors == null) {
            adapterConstructors = new ArrayList<>();
        }
        adapterConstructors.addAll(sClassToAdapters.get(intrface));
    }
    if (adapterConstructors != null) {
        sClassToAdapters.put(klass, adapterConstructors);
        return GENERATED_CALLBACK;
    }

    return REFLECTIVE_CALLBACK;
}

ClassesInfoCache.java

boolean hasLifecycleMethods(Class<?> klass) {
    Boolean hasLifecycleMethods = mHasLifecycleMethods.get(klass);
    if (hasLifecycleMethods != null) {
        return hasLifecycleMethods;
    }

    Method[] methods = getDeclaredMethods(klass);
    for (Method method : methods) {
        OnLifecycleEvent annotation = method.getAnnotation(OnLifecycleEvent.class);
        if (annotation != null) {
            // Optimization for reflection, we know that this method is called
            // when there is no generated adapter. But there are methods with @OnLifecycleEvent
            // so we know that will use ReflectiveGenericLifecycleObserver,
            // so we createInfo in advance.
            // CreateInfo always initialize mHasLifecycleMethods for a class, so we don't do it
            // here.
            createInfo(klass, methods);
            return true;
        }
    }
    mHasLifecycleMethods.put(klass, false);
    return false;
}

getObserverConstructorType()方法中调用了resolveObserverCallbackType()方法,在这个方法中,我们关注下hasLifecycleMethods这个变量值,通过查看ClassesInfoCachehasLifecycleMethods()方法我们可以知道,主要是判断当前观察者类中是否有OnLifecycleEvent注解标记的方法,如果有的话,调用createInfo来创建信息,并且返回true。所以在lifecycleEventObserver()中,type是REFLECTIVE_CALLBACK类型,表示的是反射类型,返ReflectiveGenericLifecycleObserver类对象。

/**
 * An internal implementation of {@link LifecycleObserver} that relies on reflection.
 */
class ReflectiveGenericLifecycleObserver implements LifecycleEventObserver {
    private final Object mWrapped;
    private final CallbackInfo mInfo;

    ReflectiveGenericLifecycleObserver(Object wrapped) {
        mWrapped = wrapped;
        mInfo = ClassesInfoCache.sInstance.getInfo(mWrapped.getClass());
    }

    @Override
    public void onStateChanged(@NonNull LifecycleOwner source, @NonNull Event event) {
        mInfo.invokeCallbacks(source, event, mWrapped);
    }
}

那么mLifecycleObserver.onStateChanged()调用的就是该对象中的onStateChanged()方法,后面调用的是CallbackInfoinvokeCallbacks方法, 里面的mInfo就是上一步中createInfo所创建的。我们进入CallbackInfo:

static class CallbackInfo {
    final Map<Lifecycle.Event, List<MethodReference>> mEventToHandlers;
    final Map<MethodReference, Lifecycle.Event> mHandlerToEvent;

    CallbackInfo(Map<MethodReference, Lifecycle.Event> handlerToEvent) {
        mHandlerToEvent = handlerToEvent;
        mEventToHandlers = new HashMap<>();
        for (Map.Entry<MethodReference, Lifecycle.Event> entry : handlerToEvent.entrySet()) {
            Lifecycle.Event event = entry.getValue();
            List<MethodReference> methodReferences = mEventToHandlers.get(event);
            if (methodReferences == null) {
                methodReferences = new ArrayList<>();
                mEventToHandlers.put(event, methodReferences);
            }
            methodReferences.add(entry.getKey());
        }
    }

    @SuppressWarnings("ConstantConditions")
    void invokeCallbacks(LifecycleOwner source, Lifecycle.Event event, Object target) {
      	//反射调用分发事件
        invokeMethodsForEvent(mEventToHandlers.get(event), source, event, target);
      	//同时也分发一次ON_ANY 事件
        invokeMethodsForEvent(mEventToHandlers.get(Lifecycle.Event.ON_ANY), source, event,
                target);
    }

    private static void invokeMethodsForEvent(List<MethodReference> handlers,
            LifecycleOwner source, Lifecycle.Event event, Object mWrapped) {
        if (handlers != null) {
            for (int i = handlers.size() - 1; i >= 0; i--) {
                handlers.get(i).invokeCallback(source, event, mWrapped);
            }
        }
    }
}

MethodReference.java

void invokeCallback(LifecycleOwner source, Lifecycle.Event event, Object target) {
    //noinspection TryWithIdenticalCatches
    try {
        switch (mCallType) {
            case CALL_TYPE_NO_ARG:
                mMethod.invoke(target);
                break;
            case CALL_TYPE_PROVIDER:
                mMethod.invoke(target, source);
                break;
            case CALL_TYPE_PROVIDER_WITH_EVENT:
                mMethod.invoke(target, source, event);
                break;
        }
    } catch (InvocationTargetException e) {
        throw new RuntimeException("Failed to call observer method", e.getCause());
    } catch (IllegalAccessException e) {
        throw new RuntimeException(e);
    }
}

在这里,我们可以看到就是通过反射去调用OnLifecycleEvent标记的方法,做一次事件的分发,同时ON_ANY事件也会每次都触发一次。

看到这里,我们基本上明白了生命周期事件是如何分发的,同时我们也知道为什么OnLifecycleEvent注解标记方法后,该方法就会在生命周期变化时得到调用。

我们注意到type还有一个GENERATED_CALLBACK类型,那么这个类型做了什么呢?我们知道上面是通过反射去执行的,反射操作一直是耗性能的操作,所以为了优化性能,Lifecycle可以选择通过apt在编译器生成对应代码,然后直接调用。可以通过添加下面的库来支持,这里就不多做介绍了。

kapt "androidx.lifecycle:lifecycle-compiler:$lifecycle_version"

结尾

Lifecycle的介绍暂时就到这里,很多细节的忽略请多包涵,文中若有不对的地方,还请大家多多指正!

;