Bootstrap

python gradio 组件file,dataframe

1、file例子

import os

import gradio as gr
import tempfile
import shutil
def generate_file(file_obj):
    global tmpdir
    print('临时文件夹地址:{}'.format(tmpdir))
    print('上传文件的地址:{}'.format(file_obj.name)) # 输出上传后的文件在gradio中保存的绝对地址

    #获取到上传后的文件的绝对路径后,其余的操作就和平常一致了

    # 将文件复制到临时目录中
    shutil.copy(file_obj.name, tmpdir)

    # 获取上传Gradio的文件名称
    FileName=os.path.basename(file_obj.name)

    # 获取拷贝在临时目录的新的文件地址
    NewfilePath=os.path.join(tmpdir,FileName)
    print(NewfilePath)

    # 打开复制到新路径后的文件
    with open(NewfilePath, 'rb') as file_obj:

        #在本地电脑打开一个新的文件,并且将上传文件内容写入到新文件
        outputPath=os.path.join(tmpdir,"New"+FileName)
        with open(outputPath,'wb') as w:
            w.write(file_obj.read())

    # 返回新文件的的地址(注意这里)
    return outputPath
def main():
    global tmpdir
    with tempfile.TemporaryDirectory(dir='.') as tmpdir:
        # 定义输入和输出
        inputs = gr.components.File(label="上传文件")
        outputs = gr.components.File(label="下载文件")

        # 创建 Gradio 应用程序g
        app = gr.Interface(fn=generate_file, inputs=inputs, outputs=outputs,   title="文件上传、并生成可下载文件demo",
                      description="上传任何文件都可以,只要大小别超过你电脑的内存即可"
      )

        # 启动应用程序
        app.launch(share=True)
if __name__=="__main__":
    main()


2、dataframe 列子

import gradio as gr
import pandas as pd


# 定义列名
column_names = ["商品名称", "商品价格", "商品库存", "商品类别"]

# 生成测试数据
data = [
    ["商品1", 100, 10, "类别1"],
    ["商品2", 200, 20, "类别2"],
    ["商品3", 300, 30, "类别3"],
    ["商品4", 400, 40, "类别1"],
    ["商品5", 500, 50, "类别2"],
    ["商品6", 600, 60, "类别3"],
]

# 创建Dataframe
df = pd.DataFrame(data, columns=column_names)


def filter_data(df, product, category):
    # 对于没有特定过滤条件的情况,生成一个全为True的布尔序列
    product_filter = (df['商品名称'] == product) if product is not None and product != "ALL" and len(
        product) != 0 else pd.Series(
        [True] * len(df))
    category_filter = (df['商品类别'] == category) if category is not None and category != "ALL" and len(
        category) != 0 else pd.Series([True] * len(df))

    # 应用过滤条件
    result = df[product_filter & category_filter]
    return result


# 创建 Gradio 组件
demo = gr.Interface(
    filter_data,
    inputs=[gr.DataFrame(value=df, col_count=(4, 'fixed')), gr.Dropdown(choices=["ALL"] + sorted(df["商品名称"].unique())),
            gr.Radio(choices=["ALL"] + sorted(df["商品类别"].unique()))],
    outputs='dataframe'
)

# 显示界面
demo.launch()

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;