Bootstrap

Paper Reading - Long-term Recurrent Convolutional Networks for Visual Recognition and Description ( ...

Link of the Paper: https://arxiv.org/abs/1411.4389

Main Points:

  1. A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep.
  2. The recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations.

Other Key Points:

  1. A significant limitation of simple RNN models which strictly integrate state information over time is known as the "vanishing gradient" effect: the ability to backpropogate an error signal through a long-range temporal interval becomes increasingly impossible in practice.
  2. The authors show LSTM-type models provide for improved recognition on conventional video activity challenges and enable a novel end-to-end optimizable mapping from image pixels to sentence-level natural language descriptions.
posted on 2018-08-13 11:31  LZ_Jaja 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/zlian2016/p/9467093.html

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;