nnunetv2系列:使用默认的预测类推理2D数据
这里参考源代码nnUNet/nnunetv2/inference/predict_from_raw_data.py
中给的示例进行调整和测试。
代码示例
from torch import device
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor
# from nnunetv2.paths import (
# nnUNet_results,
# # nnUNet_raw
# )
# from batchgenerators.utilities.file_and_folder_operations import join
from time import time
if __name__ == "__main__":
start = time()
# instantiate the nnUNetPredictor
predictor = nnUNetPredictor(
tile_step_size=0.5,
use_gaussian=True,
use_mirroring=True,
perform_everything_on_device=True,
device=device("cuda", 0),
verbose=False,
verbose_preprocessing=False,
allow_tqdm=True,
)
# initializes the network architecture, loads the checkpoint
predictor.initialize_from_trained_model_folder(
# 直接使用绝对路径,替换join方法
"/home/bio/family/segmenation/nnUNet/nnUNet_results/Dataset500_ScleraIrisSegmentation/nnUNetTrainer__nnUNetPlans__2d",
# join(
# nnUNet_results,
# "Dataset500_ScleraIrisSegmentation/nnUNetTrainer__nnUNetPlans__2d"
# ),
use_folds=(0,),
checkpoint_name="checkpoint_best.pth",
)
# variant 1: give input and output folders
# 使用绝对路径,否则会报错
# 推荐内部注释生成json文件的代码,否则默认会生成json文件
predictor.predict_from_files(
# 实际测试发现,必须先转成nnunet格式,再进行预测,数据名称应该为*_0000.png这类的
"/home/bio/family/segmenation/nnUNet/afamily_test/inference/imagesTr",
"/home/bio/family/segmenation/nnUNet/afamily_test/inference/imagesTr_predict",
save_probabilities=False,
overwrite=False,
num_processes_preprocessing=1,
num_processes_segmentation_export=1,
folder_with_segs_from_prev_stage=None,
num_parts=1,
part_id=0,
)
print(f"Time taken: {time() - start}")