AUC是什么东西?
AUC是一个模型评价指标,只能够用于二分类模型的评价,对于二分类模型来说还有很多其他的评价指标:
比如:logloss,accuracy,precision
在上述的评价指标当中,数据挖掘类比赛中,AUC和logloss是比较常见的模型评价指标
那么问题来了||ヽ( ̄▽ ̄)ノミ|Ю为啥是AUC和logloss?
因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy的话,需要先将概率转换成类别,这就需要手动设置一个阈值,如果对一个样本的预测概率高于这个预测,就把这个样本放进一个类别当中,如果低于这个阈值,就放在另一个类别当中,阈值在很大程度上影响了accuracy的计算
使用AUC或者logloss的好处就是可以避免将预测概率转换成类别
AUC: Area under curve
字面理解:某条曲线下面区域的面积
问题来了,到底是哪一条曲线?
曲线的名字叫做:ROC曲线
ROC曲线讲解
(该内容来自于维基百科)
ROC分析的是二元分类模型,也就是输出结果只有两种类别的模型(垃圾邮件/非垃圾邮件)
当观测量的结果是一个连续值的时候,类与类的边界必须用一个阈值threshold来界定
举例来说,用血压值来检测一个人是否有高血压,测出的血压值是连续的实数(从0~200都有可能),以收缩压140/舒张压90为阈值,阈值以上便诊断为有高血压,阈值未满者诊断为无高血压。二元分类模型的个案预测有四种结局:P:positive N:negative
- 真阳性(TP):诊断为有,实际上也有高血压。
- 伪阳性(FP):诊断为有,实际却没有高血压。
- 真阴性(TN):诊断为没有,实际上也没有高血压。
- 伪阴性(FN):诊断为没有,实际却有高血压。
这四种结局可以画成2 × 2的混淆矩阵:
ROC空间将伪阳性率FPR定义为X轴,将真阳性率TPR定义为Y轴
TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。
FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。
给定一个二元分类模型和它的阈值,就能从所有样本的(阳性/阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 座标点。
从 (0, 0) 到 (1,1) 的对角线将ROC空间划分为左上/右下两个区域,在这条线的以上的点代表了一个好的分类结果(胜过随机分类),而在这条线以下的点代表了差的分类结果(劣于随机分类)。
完美的预测是一个在左上角的点,在ROC空间座标 (0,1)点,X=0 代表着没有伪阳性,Y=1 代表着没有伪阴性(所有的阳性都是真阳性);也就是说,不管分类器输出结果是阳性或阴性,都是100%正确。一个随机的预测会得到位于从 (0, 0) 到 (1, 1) 对角线(也叫无识别率线)上的一个点;最直观的随机预测的例子就是抛硬币。
让我们来看在实际有100个阳性和100个阴性的案例时,四种预测方法(可能是四种分类器,或是同一分类器的四种阈值设定)的结果差异:
将这4种结果画在ROC空间里:
**离左上角越近的点预测(诊断)准确率越高。**离右下角越近的点,预测越不准。
在A、B、C三者当中,最好的结果是A方法。
B方法的结果位于随机猜测线(对角线)上,在例子中我们可以看到B的准确度是50%。
C虽然预测准确度最差,甚至劣于随机分类,也就是低于0.5(低于对角线)。然而,当将C以 (0.5, 0.5) 为中点作一个镜像后,C’的结果甚至要比A还要好。这个作镜像的方法,简单说,不管C(或任何ROC点低于对角线的情况)预测了什么,就做相反的结论。
上述ROC空间里的单点,是给定分类模型且给定阈值后得出的。但同一个二元分类模型的阈值可能设定为高或低,每种阈值的设定会得出不同的FPR和TPR。
将同一模型每个阈值 的 (FPR, TPR) 座标都画在ROC空间里,就成为特定模型的ROC曲线。
在同一个分类器之内,阈值的不同设定对ROC曲线的影响,仍有一些规律可循:
-
当阈值设定为最高时,亦即所有样本都被预测为阴性,没有样本被预测为阳性,此时在伪阳性率 FPR = FP / ( FP + TN ) 算式中的 FP = 0,所以 FPR = 0%。同时在真阳性率(TPR)算式中, TPR = TP / ( TP + FN ) 算式中的 TP = 0,所以 TPR = 0%
–> 当阈值设定为最高时,必得出ROC座标系左下角的点 (0, 0)。 -
当阈值设定为最低时,亦即所有样本都被预测为阳性,没有样本被预测为阴性,此时在伪阳性率FPR = FP / ( FP + TN ) 算式中的 TN = 0,所以 FPR = 100%。同时在真阳性率 TPR = TP / ( TP + FN ) 算式中的 FN = 0,所以TPR=100%
–>当阈值设定为最低时,必得出ROC座标系右上角的点 (1, 1)。
因为TP、FP、TN、FN都是累积次数,TN和FN随着阈值调低而减少(或持平),TP和FP随着阈值调低而增加(或持平),所以FPR和TPR皆必随着阈值调低而增加(或持平)。
–>随着阈值调低,ROC点 往右上(或右/或上)移动,或不动;但绝不会往左下(或左/或下)移动。
曲线下面积(AUC)
在比较不同的分类模型时,可以将每个模型的ROC曲线都画出来,比较曲线下面积做为模型优劣的指标。
意义
ROC曲线下方的面积(英语:Area under the Curve of ROC (AUC ROC)),其意义是:
因为是在1x1的方格里求面积,AUC必在0~1之间。
假设阈值以上是阳性,以下是阴性;
若随机抽取一个阳性样本和一个阴性样本,分类器正确判断阳性样本的值高于阴性样本之机率=AUC
简单说:AUC值越大的分类器,正确率越高。
从AUC判断分类器(预测模型)优劣的标准:
AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。
计算
AUC的计算有两种方式,都是以逼近法求近似值。
AUC为什么可以衡量分类的效果?
- AUC就是从所有1样本中随机选取一个样本,从所有0样本中随机选取一个样本,然后根据你的分类器对两个随机样本进行预测,把1样本预测为1的概率为p1,把0样本预测为1的概率为p2,p1>p2的概率就是AUC。所以AUC应该反映的是分类器对样本的排序能力,另外,AUC对样本类别是否均衡并不敏感,这也是不均衡样本通常采用AUC评价分类性能的原因
根据上面的推断,那么随机抽取一个样本,对应每一潜在可能值X都有对应一个判定正样本的概率P。
对一批已知正负的样本集合进行分类,按照预测概率从高到低进行排序,
对于正样本中概率最高的,排序为rank_1,
比它概率小的有M-1个正样本(M为正样本个数),(ranl_1-M)个负样本。
正样本中概率第二高的,排序为rank_2,
比它概率小的有M-2个正样本,(rank_2-(M-1))个负样本,
以此类推,正样本中概率最小的,排序为rank_M,
比它概率小的有0个正样本,(rank_M-1)个负样本。
总共有M*N个正负样本对,把所有比较中正样本概率大于负样本概率的例子都算上,
得到公式:
就是正样本概率大于负样本概率的可能性,将上述结果化简之后:
上述结果就是,AUC公式
AUC是现在分类模型中,特别是二分类模型使用的主要离线评测指标之一,相比于准确率,召回率,AUC有一个独特的优势,就是不管具体的得分,只关注于排序结果,这使得它特别适用于排序问题的效果评估
根据上面的公式求解AUC
首先对score从大到小排序,然后令最大score对应的sample的rank值为n,第二大score对应sample的rank值为n-1,以此类推从n到1。然后把所有的正类样本的rank相加,再减去正类样本的score为最小的那M个值的情况。得到的结果就是有多少对正类样本的score值大于负类样本的score值,最后再除以M×N即可。**值得注意的是,当存在score相等的时候,对于score相等的样本,需要赋予相同的rank值(无论这个相等的score是出现在同类样本还是不同类的样本之间,都需要这样处理)。**具体操作就是再把所有这些score相等的样本 的rank取平均。然后再使用上述公式。此公式描述如下:
def naive_auc(labels,preds):
"""
最简单粗暴的方法
先