Bootstrap

leetcode hot100(第二部分) + python(c++)

50-1. 乘积最大子数组

思路1:找到状态转移方程:

maxf[i]:表示在i处最大连乘数
minf[i]:表示在i处最小连乘数
maxf[i] = max(nums[i],nums[i]*minf[i-1],nums[i]*maxf[i-1])
minf[i] = min(nums[i],nums[i]*minf[i-1],nums[i]*maxf[i-1])

#maxf[i]:表示在i处最大连乘数
#minf[i]:表示在i处最小连乘数
#maxf[i] = max(nums[i],nums[i]*minf[i-1],nums[i]*maxf[i-1])
#minf[i] = min(nums[i],nums[i]*minf[i-1],nums[i]*maxf[i-1])
class Solution:
    def maxProduct(self, nums):
        n = len(nums)
        maxf,minf = [0]*n,[0] * n
        maxf[0],minf[0] = nums[0],nums[0]
        for i in range(1,n):
            maxf[i] = max(nums[i], nums[i] * minf[i - 1], nums[i] * maxf[i-1])
            minf[i] = min(nums[i], nums[i] * minf[i - 1], nums[i] * maxf[i-1])
        print('==maxf:', maxf)
        return max(maxf)

nums = [2,3,-2,4]
sol = Solution()
sol.maxProduct(nums)

思路2:优化版 由于第 i 个状态只和第 i - 1个状态相关,可以只用两个变量来维护 i - 1时刻的状态,一个维护 max, 一个维护 min

class Solution:
    def maxProduct(self, nums):

        min_value = nums[0]
        max_value = nums[0]
        res = nums[0]
        for i in range(1, len(nums)):
            mx = max_value
            mn = min_value
            max_value = max(nums[i], nums[i]*mx, nums[i]*mn)
            min_value = min(nums[i], nums[i]*mx, nums[i]*mn)
            print('==max_value:', max_value)
            print('==min_value:', min_value)
            res = max(max_value, res)
            print('==res:', res)
nums = [2,3,-2,4]
sol = Solution()
sol.maxProduct(nums)

50-2.三个数的最大乘积

思路:从小到大排序,如果都是正数则结果是最后三个相乘,如有正有负,结果有可能就是前两个相乘在乘以最后一个正数

class Solution:
    def maximumProduct(self, nums):
        nums = sorted(nums)
        return max(nums[-1]*nums[-2]*nums[-3], nums[0]*nums[1]*nums[-1])


# nums = [1, 2, 3, 4]
nums = [-1, -2, 1, 2, 3]
sol = Solution()
sol.maximumProduct(nums)

51. 最小栈

class MinStack:
 
    def __init__(self):
        """
        initialize your data structure here.
        """
        self.stack = []
 
 
    def push(self, x: int) -> None:
        self.stack.append(x)
 
    def pop(self) -> None:
        self.stack.pop()
 
    def top(self) -> int:
        return self.stack[-1]
 
    def min(self) -> int:
        return min(self.stack)
 
 
 
# Your MinStack object will be instantiated and called as such:
# obj = MinStack()
# obj.push(x)
# obj.pop()
# param_3 = obj.top()
# param_4 = obj.min()

c++实现:

class MinStack {
public:
    stack<int> stack_A;
    stack<int> min_stack;
    /** initialize your data structure here. */
    MinStack() {
 
    }
    
    void push(int x) {
        stack_A.push(x);
        if(min_stack.empty() || min_stack.top()>=x){
            min_stack.push(x);
        }
    }
    
    void pop() {
        if(stack_A.top() == min_stack.top()){
            min_stack.pop();
        }
        stack_A.pop();
    }
    
    int top() {
        return stack_A.top();
    }
    
    int min() {
        return min_stack.top();
    }
};
 
/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack* obj = new MinStack();
 * obj->push(x);
 * obj->pop();
 * int param_3 = obj->top();
 * int param_4 = obj->min();
 */

52.多数元素

排序:

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        return sorted(nums)[len(nums)//2]

投票法(最优解):

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        votes = 0
        for num in nums:
            if votes == 0:
                x = num
            if num == x:
                votes += 1
            else:
                votes -= 1
            # print('==x:', x)
            # print('==votes:', votes)
        return x

53-1.打家劫舍

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums)==0:
            return 0
        if len(nums)<2:
            return max(nums)
        opt = [0]*len(nums)
        opt[0] = nums[0]
        opt[1] = max(nums[0],nums[1])
        for i in range(2, len(nums)):
            opt[i] = max(opt[i-2]+nums[i],opt[i-1])
        print('=opt:', opt)
        return max(opt)


nums = [2,7,9,3,1]
sol = Solution()
sol.rob(nums)

53-2. 打家劫舍 II

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
 
        if len(nums)==0:
            return 0
 
        if len(nums)<=2:
            return max(nums)
 
        opt1 = [0] * len(nums)
        opt2 = [0] * len(nums)
        #不抢第一家
        opt1[0] = 0
        opt1[1] = nums[1]
        #不抢最后一家
        opt2[0] = nums[0]
        opt2[1] = max(nums[:2])
 
 
        for i in range(2,len(nums)):
            opt1[i]=max(opt1[i-2]+nums[i], opt1[i-1])
        print(opt1)
 
 
        for i in range(2, len(nums)-1):
            opt2[i] = max(opt2[i - 2] + nums[i], opt2[i - 1])
        print(opt2)
        return max(opt1[-1],opt2[-2])
nums=[1,2,3,1]
sol = Solution()
res = sol.rob(nums)
print('res:')
print(res)

53-3. 打家劫舍 III

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def helper(self,node):
        if node is None:
            return 0, 0
        choose_l_value,no_choose_l_value = self.helper(node.left)
        choose_r_value,no_choose_r_value = self.helper(node.right)

        return node.val+no_choose_l_value+no_choose_r_value, max(choose_l_value,no_choose_l_value)+max(choose_r_value,no_choose_r_value)
    def rob(self, root: TreeNode) -> int:
        return max(self.helper(root))

54.岛屿数量

思路:递归 也就是求1的连通域个数,从1开始进行遍历,将遍历过得1依次置位0,遍历的次数就是连通域个数


# 求1的连通域个数,从1开始进行遍历,将遍历过得1依次置位0,遍历的次数就是连通域个数
class Solution:
    def helper(self, i, j, h, w):
        if i < 0 or i >= h or j < 0 or j >= w or self.grid[i][j] == "0":
            return
        self.grid[i][j] = "0"

        self.helper(i - 1, j, h, w)
        self.helper(i + 1, j, h, w)
        self.helper(i, j-1, h, w)
        self.helper(i, j+1, h, w)

    def numIslands(self, grid):
        if len(grid) == 0:
            return []
        self.grid = grid
        h, w = len(grid), len(grid[0])
        nums = 0
        for i in range(h):
            for j in range(w):
                if self.grid[i][j] == "1":
                    nums += 1
                    self.helper(i, j, h, w)
        print('==self.grid:', self.grid)
        print('==nums:', nums)
        return nums

grid = [
    ["1", "1", "1", "1", "0"],
    ["1", "1", "0", "1", "0"],
    ["1", "1", "0", "0", "0"],
    ["0", "0", "0", "0", "0"]
]

sol = Solution()
sol.numIslands(grid)

 c++实现:

class Solution {
public:
    vector<vector<char>> grid;
    int h;
    int w;
    void help(int i, int j){
        if(i < 0 || i > this->h - 1 || j < 0 || j > this->w - 1 || this->grid[i][j] == '0'){
            return ;
        }
        this->grid[i][j] = '0';
        help(i - 1, j);
        help(i + 1, j);
        help(i, j - 1);
        help(i, j + 1);
    }
    int numIslands(vector<vector<char>>& grid) {
        this->grid = grid;
        this->h = grid.size();
        this->w = grid[0].size();
        int res = 0;
        for(int i = 0; i < this->h; i++){
            for(int j = 0; j < this->w; j++){
                if(this->grid[i][j] == '1'){
                    res += 1;
                }
                help(i, j);
            }
        }
        return res;
    }
};

55.反转链表

思路1:双指针 

class Solution(object):
	def reverseList(self, head):
		"""
		:type head: ListNode
		:rtype: ListNode
		"""
		# 申请两个节点,pre和 cur,pre指向None
		pre = None
		cur = head
		# 遍历链表,while循环里面的内容其实可以写成一行
		while cur:
			# 记录当前节点的下一个节点
			tmp = cur.next
			# 然后将当前节点指向pre
			cur.next = pre
			# pre和cur节点都前进一位
			pre = cur
			cur = tmp
		return pre	

c++实现:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        ListNode* pre = nullptr;
        ListNode* temp = head;
        while(head){
            temp = head->next;
            head->next = pre;
            pre = head;
            head = temp;
        }
        return pre;
    }
};

思路2.递归法

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def reverseList(self, head: ListNode) -> ListNode:
        # pre = None
        # cur = head

        # while cur:
        #     node = cur.next
        #     cur.next = pre
        #     pre = cur
        #     cur = node
        # return pre
        if head is None or head.next is None:
            return head
        new_node = self.reverseList(head.next)
        print('head.val',head.val)
        head.next.next = head
        head.next = None
        return new_node

56-1. 课程表

标题

思路:对于这种从图找拓扑排序 ,只有有向无环图能够找到,将入度为0的节点先进入队列,在利用bfs进行出队处理,此时将出队的节点的下一个节点的度进行减一计数,同时遍历的节点数进行加一,最终节点都进行了遍历,则说明找到了拓扑排序.

思路1:用邻接列表


class Solution:
    def canFinish(self, numCourses, prerequisites):
        indegrees = [0] * numCourses  # 入度列表
        print('==indegrees:', indegrees)
        adjacency = [[] for i in range(numCourses)]  # 邻接列表 存储节点的下一个节点
        print('=adjacency:', adjacency)
        #得到入度和每个课程的邻接列表
        for cur, pre in prerequisites:
            indegrees[cur] += 1
            adjacency[pre].append(cur)
        print('====indegrees:', indegrees)
        print('====adjacency:', adjacency)

        quene = []
        # 如果度为0 就进入队列
        for i in range(len(indegrees)):
            if indegrees[i] == 0:
                quene.append(i)
        print('==quene:', quene)
        num_nodes = 0
        while quene:
            node = quene.pop(0)
            num_nodes += 1
            for next_node in adjacency[node]:
                indegrees[next_node] -= 1  # 找出下一个点相应的度-1
                if indegrees[next_node] == 0:  # 入度为0
                    quene.append(next_node)
        print('==num_nodes:', num_nodes)
        return num_nodes == numCourses

# numCourses, prerequisites = 2, [[1, 0]]
# numCourses, prerequisites = 2, [[1, 0], [0, 1]]
numCourses, prerequisites = 6, [[3, 0], [3, 1], [4, 1], [4, 2], [5, 3], [5, 4]]
sol = Solution()
res = sol.canFinish(numCourses, prerequisites)
print('res:', res)

思路2:用邻接矩阵的bfs


class Solution:
    def canFinish(self, numCourses, prerequisites):
        indegrees = [0] * numCourses  # 度列表
        adjacency = [[0 for i in range(numCourses)] for i in range(numCourses)]  # 邻接矩阵 表示节点之间关系
        print('==init adjacency:', adjacency)
        for cur, pre in prerequisites:
            indegrees[cur] += 1
            adjacency[pre][cur] = 1
        print('==init adjacency complete:', adjacency)
        print('==init indegrees complete:', indegrees)

        quene = []
        for i in range(len(indegrees)):
            if indegrees[i] == 0:
                quene.append(i)
        print('==quene:', quene)
        num_nodes = 0
        while quene:
            node = quene.pop()
            num_nodes += 1
            for j in range(numCourses):
                if adjacency[node][j] == 1:
                    next_node = j
                    adjacency[node][j] -= 1
                    indegrees[next_node] -= 1
                    if indegrees[next_node] == 0:
                        quene.append(next_node)
        print('==num_nodes:', num_nodes)
        return num_nodes == numCourses

# numCourses = 2
# prerequisites = [[0, 1]]
numCourses = 4
prerequisites = [[1, 0], [2, 0], [3,1],[3,2]]
sol = Solution()
sol.canFinish(numCourses, prerequisites)

56-2:课程表 II

思路:有向无环图,BFS遍历 


class Solution:
    def canFinish(self, numCourses, prerequisites):
        indegrees = [0] * numCourses  # 入度列表
        print('==indegrees:', indegrees)
        adjacency = [[] for i in range(numCourses)]  # 邻接列表
        print('=adjacency:', adjacency)
        #得到入度和每个课程的邻接列表
        for cur, pre in prerequisites:
            indegrees[cur] += 1
            adjacency[pre].append(cur)
        print('====indegrees:', indegrees)
        print('====adjacency:', adjacency)

        quene = []
        # 如果度为0 就进入队列
        for i in range(len(indegrees)):
            if indegrees[i] == 0:
                quene.append(i)
        print('==quene:', quene)
        num_nodes = 0
        learn_node = []
        while quene:
            node = quene.pop(0)
            print('=======node', node)
            learn_node.append(node)
            num_nodes += 1
            for next_node in adjacency[node]:
                indegrees[next_node] -= 1  # 找出下一个点相应的度-1
                if indegrees[next_node] == 0:  # 入度为0
                    quene.append(next_node)
        print('==num_nodes:', num_nodes)
        return learn_node if num_nodes == numCourses else []

# numCourses, prerequisites = 2, [[1, 0]]
# numCourses, prerequisites = 2, [[1, 0], [0, 1]]
numCourses, prerequisites = 6, [[3, 0], [3, 1], [4, 1], [4, 2], [5, 3], [5, 4]]
sol = Solution()
res = sol.canFinish(numCourses, prerequisites)
print('res:', res)

思路2:用邻接矩阵的bfs


class Solution:
    def canFinish(self, numCourses, prerequisites):
        indegrees = [0] * numCourses  # 度列表
        adjacency = [[0 for i in range(numCourses)] for i in range(numCourses)]  # 邻接矩阵 表示节点之间关系
        print('==init adjacency:', adjacency)
        for cur, pre in prerequisites:
            indegrees[cur] += 1
            adjacency[pre][cur] = 1
        print('==init adjacency complete:', adjacency)
        print('==init indegrees complete:', indegrees)

        quene = []
        for i in range(len(indegrees)):
            if indegrees[i] == 0:
                quene.append(i)
        print('==quene:', quene)
        num_nodes = 0
        learn_nodes = []
        while quene:
            node = quene.pop()
            learn_nodes.append(node)
            num_nodes += 1
            for j in range(numCourses):
                if adjacency[node][j] == 1:
                    next_node = j
                    adjacency[node][j] -= 1
                    indegrees[next_node] -= 1
                    if indegrees[next_node] == 0:
                        quene.append(next_node)
        print('==num_nodes:', num_nodes)
        print('=learn_nodes:', learn_nodes)
        return learn_nodes if num_nodes == numCourses else []

# numCourses = 2
# prerequisites = [[0, 1]]
numCourses = 4
prerequisites = [[1, 0], [2, 0], [3,1],[3,2]]
sol = Solution()
sol.canFinish(numCourses, prerequisites)

57.实现 Trie (前缀树)

思路:利用字典存储每个单词,同时用特殊字符结尾。


class Trie:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.root = {}
        self.word_end = -1

    def insert(self, word):
        """
        Inserts a word into the trie.
        """
        curNode = self.root
        for c in word:
            if c not in curNode:
                curNode[c] = {}
            curNode = curNode[c]
        curNode[self.word_end] = True
        # print('==curNode:', curNode)


    def search(self, word):
        """
        Retu
        rns if the word is in the trie.
        """
        curNode = self.root
        for c in word:
            if c not in curNode:
                return False
            curNode = curNode[c]
        if self.word_end not in curNode:
            return False
        return True


    def startsWith(self, prefix):
        """
        Returns if there is any word in the trie that starts with the given prefix.
        """
        curNode = self.root
        for c in prefix:
            if c not in curNode:
                return False
            curNode = curNode[c]
        return True

word = 'apple'
prefix = 'ad'
obj = Trie()
obj.insert(word='apple')
obj.insert(word='add')
# obj.insert(word='app')
print('tree:', obj.root)
param_2 = obj.search(word)
print('search res:', param_2)
param_3 = obj.startsWith(prefix)
print('==param_3:', param_3)

58.数组中的第K个最大元素

思路:排序 取第k个值就可


class Solution:
    def quicksort(self, arr):
        if len(arr) <= 1:
            return arr
        privot = arr[len(arr) // 2]
        left = [i for i in arr if i < privot]
        middle = [i for i in arr if i == privot]
        right = [i for i in arr if i > privot]

        # left = [arr[i] for i in range(len(arr)) if arr[i] < privot]
        # middle = [arr[i] for i in range(len(arr)) if arr[i] == privot]
        # right = [arr[i] for i in range(len(arr)) if arr[i] > privot]

        return self.quicksort(left) + middle + self.quicksort(right)

    def findKthLargest(self, nums, k):

        return self.quicksort(nums)[::-1][k-1]

# nums = [3, 2, 1, 5, 6, 4]
# k = 2
nums = [3,2,3,1,2,4,5,5,6]
k = 4
sol = Solution()
res = sol.findKthLargest(nums, k)
print('res:', res)

思路2:topk问题用最小堆 

class Solution:
    def findKthLargest(self, nums, k):
        arr = []
        heapq.heapify(arr)
        for i in range(k):
            heapq.heappush(arr, nums[i])
        for i in range(k, len(nums)):
            heapq.heappush(arr, nums[i])
            heapq.heappop(arr)
        print('==arr:', arr)
        return arr[0]

arr = [3,2,1,5,6,4]
k = 2
sol = Solution()
sol.findKthLargest(arr, k)

59.最大正方形

思路:题目既然求最大正方形面积,那就先由2*2正方形拓展更大即可,也就是可以用动态规划来存储左上角,左边,上边的最小值,也是正方形边长

1.转移方程为 dp[i][j] = min(dp[i-1][j],dp[i][j-1].dp[i-1][j-1])+1

2.初始化边界条件为: dp[:][0] = matrix[:][0] dp[0][:] = matrix[0][:]

class Solution:
    def maximalSquare(self, matrix):
        max_side = 0
        h,w = len(matrix),len(matrix[0])
        dp = [[0 for i in range(w)] for i in range(h)]
        print('初始化dp',np.array(dp))
        for i in range(h):
            dp[i][0] = int(matrix[i][0])
            max_side = max(max_side, dp[i][0])
        for i in range(w):
            dp[0][i] = int(matrix[0][i])
            max_side = max(max_side, dp[0][i])
        print('初始化边界dp',np.array(dp))

        for i in range(1,h):
            for j in range(1,w):
                if matrix[i][j]=='1':
                    dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])+1
                max_side = max(max_side, dp[i][j])
        print('转移好dp',np.array(dp))
        return max_side**2


matrix = [["1","0","1","0","0"],
          ["1","0","1","1","1"],
          ["1","1","1","1","1"],
          ["1","0","0","1","0"]]
# matrix = [["0","1"],["1","0"]]
sol = Solution()
res=  sol.maximalSquare(matrix)
print(res)

60.翻转二叉树

思路:递归遍历左右子树进行交换即可

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def invertTree(self, root: TreeNode) -> TreeNode:
        if root is None:
            return None
        left = self.invertTree(root.left)
        right = self.invertTree(root.right)
        root.left = right
        root.right = left
        return root

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(root == nullptr){
            return nullptr;
        }
        TreeNode* left = invertTree(root->left);
        TreeNode* right = invertTree(root->right);
        root->left = right;
        root->right = left;
        return root;
    }
};

61.请判断一个链表是否为回文链表

利用列表将列表值进行拷贝,在判断是否是回文字符串

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def isPalindrome(self, head: ListNode) -> bool:
        stack= []
        while head:
            stack.append(head.val)
            head = head.next
        return stack==stack[::-1]

c++实现:

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    bool isPalindrome(ListNode* head) {
        vector<int> res;
        while(head){
            res.push_back(head->val);
            head = head->next;
        }
        int left=0;
        int right=res.size()-1;
        while(left<right){
            if(res[left]==res[right]){
                left+=1;
                right-=1;
            }
            else{
                return false;
            }
        }
        return true;

    }
};

62:二叉树的最近公共祖先

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if root is None or root==p or root==q:#递归终止条件 节点为空 或者节点等于p,q其中之一
            return root
        left = self.lowestCommonAncestor(root.left, p, q)#遍历左子树
        right = self.lowestCommonAncestor(root.right, p, q)#遍历右子树
        if left is None:#左子树为空 就去右子树 
            return right
        if right is None:#右子树为空 就去左子树 
            return left
        return root#左右子树都不为空 说明找到了节点 

c++实现:

代码段 小部件

63.除自身以外数组的乘积

思路1:超时


#超时时间复杂度O(N)
class Solution:
    def productExceptSelf(self, nums):
        output = len(nums)*[0]
        for i in range(len(nums)):
            temp = 1
            for j in nums[:i]:
                temp*=j
            for j in nums[i+1:]:
                temp*=j
            output[i] = temp

        # print('==output:', output)
        return output

nums = [1, 2, 3, 4]
sol = Solution()
sol.productExceptSelf(nums)

思路2:利用空间换时间

1.借用左右数组来存储值,L[i]代表i左边的乘积值,R[i]代表i右边的乘积值

2.最终i处的值为L[i]*R[i]

class Solution:
    def productExceptSelf(self, nums):
        length = len(nums)
        L,R,output = [0]*length,[0]*length,[0]*length
        L[0] = 1
        for i in range(1, length):
            L[i] = L[i-1]*nums[i-1]
        print('==L:', L)

        R[length-1] = 1
        for i in range(length-2, -1, -1):
            print('==i:', i)
            R[i] = R[i + 1] * nums[i + 1]
        print('==R:', R)
        for i in range(length):
            output[i] = L[i]*R[i]
        return output

nums = [1, 2, 3, 4]
sol = Solution()
sol.productExceptSelf(nums)

64.滑动窗口最大值

思路1.超时O(n*k)

class Solution:
    def maxSlidingWindow(self, nums, k):
        #时间复杂度O(Nk)超时了
        res = []
        for i in range(len(nums)-k+1):
            res.append(max(nums[i:i+k]))
        return res

思路2:

动态规划:时间复杂度O(N)
1.将数组分成k+1个,剩下的一个可能不足; 
2.left数组存储每个拆分的从左到右的值,对于left来说每个块最右边元素最大;
3.right数组存储每个拆分的从右到左的值,对于right来说每个块最左边元素最大;
4.最后在利用left和right求最大值,max(left[i],right(j)) i每个块最右边元素索引,j每个块最左边元素索引

class Solution:
    def maxSlidingWindow(self, nums, k):
        n = len(nums)
        if n * k == 0:
            return []
        if k == 1:
            return nums

        left = [0] * n
        left[0] = nums[0]
        right = [0] * n
        right[n - 1] = nums[n - 1]
        for i in range(1, n):
            #从左往右
            if i%k==0:#分块的第一个元素
                left[i] = nums[i]
            else:
                left[i] = max(left[i-1],nums[i])
            # 从右往左
            j = n-i-1
            # 分块的最右边元素
            if (j+1) % k == 0:
                right[j] = nums[j]
            else:
                right[j] = max(right[j + 1], nums[j])
        print('===left:', left)
        print('===right:', right)

        #最后在利用left和right求最大值
        output = []
        for i in range(n - k + 1):
            output.append(max(left[i + k - 1], right[i]))

        return output

nums = [1,3,-1,-3,5,3,6,7]
k = 3
sol = Solution()
res = sol.maxSlidingWindow(nums, k)
print('res:', res)

思路3:双端队列:用一个队列一直存储更新最大值

# 双端队列:用一个队列一直存储更新最大值
class Solution:
    def maxSlidingWindow(self, nums, k):
        length = len(nums)
        if length == 0:
            return []
        res = []
        quene = []
        for j in range(length):
            i = j-k+1
            if i > 0 and quene[0] == nums[i-1]:#当要左移掉的元素等于quene头部元素,那么quene就移除头部元素
                quene.pop(0)
            while quene and quene[-1] < nums[j]:#保持quene里面都是单调递减的,且头部元素最大
                quene.pop()
            quene.append(nums[j])
            print('==quene:', quene)
            if i >= 0:
                res.append(quene[0])
        return res

nums = [1, 3, -1, -3, 5, 3, 6, 7]
k = 3
sol = Solution()
res = sol.maxSlidingWindow(nums, k)
print(res)

c++代码:

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> res;
        deque<int> queue_A;
        for(int i=0;i<nums.size();i++){
            int j=i-k+1;
            if(j>0 && nums[j-1]==queue_A.front()){
                queue_A.pop_front();
            }
            while (queue_A.size() && queue_A.back()<nums[i])
            {
                queue_A.pop_back();
            }
            
            queue_A.push_back(nums[i]);
            if(j>=0){
                res.push_back(queue_A.front());
            }     
        }
        return res;
    }
};

65.搜索二维矩阵 II

class Solution:
    def find(self,number,matrix):
        rows=len(matrix)#行数
        cols=len(matrix[0])#列数
        if rows<0 and cols<0:
            return False
        col=0
        row=rows-1
        while row>=0 and col<cols:
            if matrix[row][col]<number:
                col+=1
            elif matrix[row][col]>number:
                row-=1
            else:
                return True#找到
        return False#没找到
if __name__ == '__main__':
    matrix = [[1, 3, 5, 6],
              [2, 5, 8, 12],
              [4, 9, 10, 17],
              [6, 11, 11, 18]]
    sol=Solution()
    print(sol.find(17,matrix))

66. 完全平方数

 

思路:可看成M(n) = M(n-1k)+1,这里就可以用回溯当成求子集问题,但是容易超出时间限制.

1.回溯

#公式为 M(n) = M(n - k) + 1
import math
class Solution(object):
    def numSquares(self, n):
        square_nums = [i**2 for i in range(1, int(math.sqrt(n))+1)]
        print('==square_nums:', square_nums)
        res = []
        track = []
        def minNumSquares(k,track):
            """ recursive solution """
            # bottom cases: find a square number
            if k in square_nums:
                track.append(k)
                res.append(track)#满足选择条件
                return 1
            min_num = float('inf')

            # Find the minimal value among all possible solutions
            for square in square_nums:
                if k < square:
                    break
                # 满足选择列表
                store = track.copy()
                track.append(square)#做选择
                new_num = minNumSquares(k-square, track) + 1#回溯
                track = store#撤消选择
                min_num = min(min_num, new_num)

            return min_num

        return minNumSquares(n, track), res
n = 3
sol = Solution()
numbers, res = sol.numSquares(n)
print('个数:', numbers, res)

2.对于递归这种,其实都是可以用dp来减少计算量

#公式为 M(n) = M(n - k) + 1
class Solution(object):
    def numSquares(self, n):
        """
        :type n: int
        :rtype: int
        """
        square_nums = [i ** 2 for i in range(0, int(math.sqrt(n)) + 1)]
        print('square_nums==:', square_nums)
        dp = [float('inf')] * (n + 1)
        # bottom case
        dp[0] = 0

        for i in range(1, n + 1):
            for square in square_nums:
                if i < square:#小于平方的数 就break
                    break
                print('==square:', square)
                dp[i] = min(dp[i], dp[i - square] + 1)
        print('==dp:', dp)
        return dp[-1]
n = 4
sol = Solution()
numbers = sol.numSquares(n)
print('个数:', numbers)

c++实现:

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1, INT_MAX);
        vector<int> nums;
        for(int i=1; i < int(sqrt(n)) + 1; i++){
            nums.push_back(pow(i, 2));
        }
        dp[0] = 0;
        for(int i = 1; i < n+1; i++){
            for(int j=0; j < nums.size(); j++){
                if(i < nums[j]){
                    break;
                }
                dp[i] = min(dp[i], dp[i - nums[j]] + 1);
            }
        }
        return dp[n];
    }
};

67.移动零

思路1:移0法

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        n = len(nums)
        i=0
        while 0 in nums:
            nums.remove(0)
            i+=1
        nums.extend([0]*i)
        return nums

    

思路2:指针记录非0索引

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        idx = 0 
        n = len(nums)
        for i in range(len(nums)):
            if nums[i]!=0:
                nums[idx] = nums[i]
                idx+=1
        nums[idx:] = (n - idx )*[0]
        return nums

思路3:指针 交换数字


class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        idx = 0
        n = len(nums)
        for i in range(len(nums)):
            if nums[i]!=0:
                nums[idx], nums[i] = nums[i], nums[idx]
                idx+=1
        # print(idx)
        # print(nums)
        # nums[idx:] = (n - idx )*[0]
        return nums


                

    

思路4:优化特殊非0元素


class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        idx = 0
        n = len(nums)
        for i in range(len(nums)):
            if nums[i]!=0:
                if i!=idx:
                    nums[idx], nums[i] = nums[i], nums[idx]
                    idx+=1
                else:
                    idx +=1

        # print(idx)
        # print(nums)
        # nums[idx:] = (n - idx )*[0]
        return nums


                

    

68.寻找重复数

思路:对于上述题目示例1,将数组值作为索引,会发现陷入无穷循环,而无穷循环的起始点就是重复出现的数,故构成一个环,所以就想到用快慢指针进行解决,如下图所示,A是起点,B是环开始点,C是相遇点,快指针是慢指针速度的两倍。

在C点相遇以后,在从起始点和C点用相同速度奔跑,就在B点相遇了,即可以得到重复的数字。

class Solution:
    def findDuplicate(self, nums: List[int]) -> int:
        fast = 0
        slow = 0

        while True:
            # print('==fast:', fast)
            # print('==slow:', slow)
            fast = nums[nums[fast]]
            slow = nums[slow]
            if fast == slow:
                break
        start = 0
        while True:
            start = nums[start]
            fast = nums[fast]
            if start ==fast:
                break
        # print(start)
        return start

69.最长递增子序列的个数

思路:利用dp,一个数组存储向上递增的长度,一个数组存储相同长度序列的个数

class Solution:
    def findNumberOfLIS(self, nums):
        if nums ==[]:
            return(0)
        n = len(nums)
        opt_length = [1]*n
        opt_counter = [1]*n

        for i in range(1, n):
            for j in range(i):
                if nums[j] < nums[i]:
                    if opt_length[j]+1 > opt_length[i]:# 代表第一次遇到最长子序列
                        opt_length[i] = 1+opt_length[j]
                        opt_counter[i] = opt_counter[j]
                    elif opt_length[j]+1 == opt_length[i]:# 代表已经遇到过最长子序列
                        opt_counter[i] = opt_counter[i]+opt_counter[j]
            # print('====opt_length:', opt_length)
            # print('====opt_counter:', opt_counter)
        tmp = max(opt_length)
        res = sum([opt_counter[i] for i in range(n) if opt_length[i] == tmp])
        return (res)

sol = Solution()
nums = [1, 3, 5, 4, 7]
res = sol.findNumberOfLIS(nums)
print('===res:', res)

70. 删除无效的括号

思路:回溯

class Solution:
    def removeInvalidParentheses(self, s: str) -> List[str]:
        if not s:
            return [""]
        if s[0] not in "()":
            return [s[0]+i for i in self.removeInvalidParentheses(s[1:])]
        if len(s) < 2:
            return [""]
        if s[0] == ")":
            return self.removeInvalidParentheses(s[1:])
        res = set(self.removeInvalidParentheses(s[1:]))
        for i in range(1, len(s)):
            if s[i] == ")":
                a, b = set(self.removeInvalidParentheses(s[1:i])), set(self.removeInvalidParentheses(s[i+1:]))
                res |= {f"({i}){j}" for i in a for j in b}
        p = len(max(res, key=len))
        return [i for i in res if len(i) == p]

71-1.零钱兑换

 思路:找准状态状转移方程,f代表选择银币的函数,则f(11)=f(11-1)+1或f(11)=f(11-2)+1或f(11)=f(11-5)+1,则一般方程为:

f(money) = min(f(money), f(money-coin)+1)

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        #状态转移方程f(money) = min(f(money),f(money-coin)+1)
        f = [float('inf')] * (amount + 1)
        f[0] = 0
        # print('==f:', f)
        for i in range(1, amount + 1):
            for coin in coins:
                if i - coin >= 0:
                    f[i] = min(f[i], f[i - coin] + 1)
            # print('==f:', f)
        return f[-1] if f[-1]!=float('inf') else -1

            

71-2:零钱兑换 II

思路1:回溯 会超时


# 组合问题 回溯 超时
class Solution:
    def backtrace(self, amount, start, coins, track):
        if amount == 0:  # 终止条件
            # self.res.append(track)
            self.res+=1
            return
        for i in range(start, len(coins)):  # 选择条件
            if coins[i] > amount:
                continue
            # store = track.copy()
            # track.append(coins[i])
            self.backtrace(amount - coins[i], i, coins, track)
            # track = store

    def change(self, amount, coins):
        self.res = 0#[]
        coins = sorted(coins)
        self.backtrace(amount, 0, coins, [])
        return self.res

# amount = 5
# coins = [2]
amount = 5
coins = [1, 2, 5]
# amount = 500
# coins = [3,5,7,8,9,10,11]
sol = Solution()
res = sol.change(amount, coins)
print('==res:', res)

思路2:当成完全背包问题,用dp

#dp[i][j] 硬币为i 金额为j的组合数
import numpy as np
class Solution:
    def change(self, amount, coins):
        if len(coins) == 0:
            if amount == 0:
                return 1
            else:
                return 0
        dp = [[0 for i in range(amount+1)] for j in range(len(coins))]
        print('==np.array(dp):', np.array(dp))
        dp[0][0] = 1
        for j in range(coins[0], amount+1, coins[0]):
            dp[0][j] = 1
        print('==np.array(dp):', np.array(dp))
        for i in range(1, len(coins)):
            print('==coins[i]:', coins[i])
            for j in range(amount+1):
                dp[i][j] = dp[i - 1][j]#不选
                if j >= coins[i]:#选 注意与0 1背包有一点不同
                    dp[i][j] += dp[i][j - coins[i]]
            print('==np.array(dp):', np.array(dp))
        return dp[-1][-1]

amount = 5
coins = [1, 2, 5]
sol = Solution()
sol.change(amount, coins)

72.比特位计数

思路:

#思路:计算n的时候n-1计算过了
#n&n-1 就是抹掉二进制n最右边的1
class Solution:
    def countBits(self, num):
        #动态规划
        res = [0]*(num+1)
        for i in range(1, num+1):
            res[i] = res[i & i-1] + 1
        return res

num = 5
sol = Solution()
res = sol.countBits(num)
print('==res:', res)

73.前 K 个高频元素

思路:hash字典


class Solution:
    def topKFrequent(self, nums, k):
        dict_ = {}
        for num in nums:
            dict_[num] = dict_.get(num, 0)+1
        print('==dict_:', dict_)
        sort_dict = sorted(dict_.items(), key=lambda x:(x[-1], x[0]), reverse=True)
        return [sort_dict[j][0] for j in range(k)]

# nums = [1,1,1,2,2,3]
# k = 2
nums = [-1, -1]
k = 1
# nums = [1, 2]
# k = 2

sol = Solution()
res = sol.topKFrequent(nums, k)
print('==res:', res)

 74.字符串解码

思路:栈


class Solution:
    def decodeString(self, s):
        stack = []  # (str, int) 记录之前的字符串和括号外的上一个数字
        num = 0
        res = ""  # 实时记录当前可以提取出来的字符串
        for c in s:
            if c.isdigit():
                num = num * 10 + int(c)
            elif c == "[":
                stack.append((res, num))
                res, num = "", 0
            elif c == "]":
                top = stack.pop()
                print('===top:', top)
                res = top[0] + res * top[1]
                print('==res:', res)
            else:
                res += c
        return res

# s = "3[a]2[bc]"
s = "3[a2[c]]"
sol = Solution()
res = sol.decodeString(s)
print('res:', res)

75.除法求值

思路:并查集


# 并查集
class Solution:
    def __init__(self):
        self.f = {}  # 每个节点的依次关系
        self.d = {}  # 每个节点的值 将根节点值置为1

    def find(self, x):  # 查找与你连通的最上面一位
        self.f.setdefault(x, x)
        self.d.setdefault(x, 1)
        if self.f[x] == x:
            return x
        else:
            t = self.f[x]
            self.f[x] = self.find(t)
            self.d[x] *= self.d[t]
            return self.f[x]

    def union(self, A, B, value):  # 合并集
        a, b = self.find(A), self.find(B)
        if a != b:
            self.f[a] = b
            self.d[a] = self.d[B] / self.d[A] * value
            # print('===f===:', f)
            # print('===d===:', d)
    def check(self, x, y):
        if x not in self.f or y not in self.f:
            return -1.0
        a, b = self.find(x), self.find(y)
        # print('==a, b:', a, b)
        if a != b:  # 如果不在同一条线上就返回-1
            return -1.0
        return self.d[x] / self.d[y]
    def calcEquation(self, equations, values, queries):
        for i, nums in enumerate(equations):
            self.union(nums[0], nums[1], values[i])
            print('===f:', self.f)
            print('===d:', self.d)
        res = []
        for x, y in queries:
            res.append(self.check(x, y))
        return res


equations = [["a", "b"], ["b", "c"]]
values = [2.0, 3.0]
queries = [["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"]]

# equations = [["a","b"]]
# values = [2.0]
# queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
sol = Solution()
res = sol.calcEquation(equations, values, queries)
print('==res:', res)

76.根据身高重建队列

思路:按身高由高到低进行排序,身高相等时按索引从小排序

#新建一个队列按照索引进行插入


#思路:按身高由高到低进行排序,身高相等时按索引从小排序
#新建一个队列按照索引进行插入
class Solution:
    def reconstructQueue(self, people):
        people = sorted(people, key=lambda x: (-x[0], x[1]))
        print('===people:', people)
        output = []
        for p in people:
            print('===p:', p)
            output.insert(p[1], p)
            print('==output:', output)
        return output
people = [[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]]
sol = Solution()
sol.reconstructQueue(people)

77-1.目标和

思路2:动态规划 dp[i][j]表示到i为止,数字和为j的方案数,下面以两个例子为例



# dp[i][j] = dp[i-1][j-nums[i]]+dp[i-1][j+nums[i]]
class Solution:
    def findTargetSumWays(self, nums, S):

        sum_ = sum(nums)

        if abs(S) > sum_:
            return 0
        opt = [[0 for i in range(2 * sum_ + 1)] for i in range(len(nums))]
        print(np.array(opt))
        ##nums = [0,0,0,0,0,0,0,0,1]
        # S = 1
        if nums[0] == 0:  # 边界条件
            opt[0][sum_] = 2
        else:
            opt[0][sum_ - nums[0]] = 1
            opt[0][sum_ + nums[0]] = 1
        print(np.array(opt))
        for i in range(1, len(nums)):
            for j in range(2 * sum_ + 1):
                l = j - nums[i] if j - nums[i] > 0 else 0
                r = j + nums[i] if j + nums[i] < 2 * sum_ + 1 else 0
                opt[i][j] = opt[i - 1][l] + opt[i - 1][r]
            # print('===print(np.array(opt)):', np.array(opt))
        return opt[-1][sum_ + S]


# nums = [1, 1, 1, 1, 1]
# S = 3
# nums = [1000]
# S = 1000
nums = [0, 0, 0, 0, 0, 0, 0, 0, 1]
S = 1
sol = Solution()
res = sol.findTargetSumWays(nums, S)
print('==res:', res)

77-2.分割等和子集

思路1:

(1)转换成0 1背包问题,找到数组和的一半的子集

(2)dp[i][j]表示到i为止和为j是否存在

(3)dp[i][j] = dp[i-1][j] 不选择nums[i]

(4)dp[i][j] = dp[i-1][j-nums] 选择nums[i]

(5)如果 j<nums[i] dp[i][j] = dp[i-1][j]

以[1,2,3,6]为例

#转换成0 1背包问题 找到数组和的一半的子集
#到i为止和为j是否存在
#dp[i][j] = dp[i-1][j]#不选择nums[i]
#dp[i][j] = dp[i-1][j-nums]#选择nums[i]
#如果 j<nums[i] dp[i][j] = dp[i-1][j]
class Solution:
    def canPartition(self, nums):
        # nums = sorted(nums)
        # print('==nums:', nums)
        n = len(nums)
        if n<2:#数组长度无法划分
            return False
        sum_ = sum(nums)
        max_value = max(nums)
        if sum_ % 2==1:#奇数的话没法拆分
            return False
        target = sum_//2
        if max_value>target:#最大值大于一半了 不满足条件
            return False
        dp = [[False for i in range(target+1)] for i in range(n)]
        print('===np.array(dp):', np.array(dp))
        for i in range(n):#不选取任何正整数,则被选取的正整数等于 00
            dp[i][0] = True
        dp[0][nums[0]] = True#i==0 只有一个正整数 nums[0] 可以被选取
        for i in range(1,n):
            for j in range(1, target+1):
                if j<nums[i]:#j<nums[i]
                    dp[i][j] = dp[i-1][j]
                else:#不选择nums[i]与选择nums[i]
                    dp[i][j] = dp[i - 1][j] or dp[i - 1][j-nums[i]]
        print('===np.array(dp):', np.array(dp))
        return dp[-1][target]
# nums = [1, 5, 11, 5]
nums = [1, 2, 3, 6]
sol = Solution()
res = sol.canPartition(nums)
print('==res:', res)

思路2:优化版 用一维数组替代,只不过采用逆序

其中dp[j] = dp[j] || dp[j - nums[i]] 可以理解为 dp[j] (新)= dp[j] (旧) || dp[j - nums[i]] (旧),如果采用正序的话 dp[j - nums[i]]会被之前的操作更新为新值


import numpy as np
#转换成0 1背包问题 找到数组和的一半的子集
#优化版
#dp[j] = [j]#不选择nums[i]
#dp[j] = dp[j-nums]#选择nums[i]
# #如果 j<nums[i] dp[i][j] = dp[i-1][j]
class Solution:
    def canPartition(self, nums):
        # nums = sorted(nums)
        # print('==nums:', nums)
        n = len(nums)
        if n<2:#数组长度无法划分
            return False
        sum_ = sum(nums)
        max_value = max(nums)
        if sum_ % 2==1:#奇数的话没法拆分
            return False
        target = sum_//2
        if max_value>target:#最大值大于一半了 不满足条件
            return False
        dp = [False for i in range(target+1)]
        print('===np.array(dp):', np.array(dp))
        #不选取任何正整数
        dp[0] = True
        dp[nums[0]] = True#i==0 只有一个正整数 nums[0] 可以被选取
        for i in range(1, n):
            for j in range(target, 0, -1):
                if j<nums[i]:#j<nums[i]
                    dp[j] = dp[j]
                else:#不选择nums[i]与选择nums[i]
                    dp[j] = dp[j] or dp[j-nums[i]]
        print('===np.array(dp):', np.array(dp))
        return dp[-1]
# nums = [1, 5, 11, 5]
nums = [1, 2, 3, 6]
sol = Solution()
res = sol.canPartition(nums)
print('==res:', res)

78-1.路径总和

1.递归法 

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def hasPathSum(self, root, sum):
        """
        :type root: TreeNode
        :type sum: int
        :rtype: bool
        """
        if not root:
            return False
        if not root.left and not root.right and root.val==sum:
            return True
        sum -=root.val
        
        return self.hasPathSum(root.left,sum) or self.hasPathSum(root.right,sum)
        
        

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool hasPathSum(TreeNode* root, int targetSum) {
        if(root == nullptr){
            return false;
        }
        if (root->left == nullptr && root->right == nullptr && targetSum==root->val){
            return true;
        }
        targetSum -=root->val;
        return hasPathSum(root->left,targetSum) || hasPathSum(root->right,targetSum);
    }
};

2.利用栈--DFS

class Solution(object):
    def hasPathSum(self, root, sum):
        """
        :type root: TreeNode
        :type sum: int
        :rtype: bool
        """
        # # #递归终止条件 
        # if root is None:
        #     return False
        # if root.left is None and root.right is None and root.val == sum:
        #     return True
        # sum = sum - root.val
        # # print('===sum:', sum)
        # return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) 
        if not root:
            return False
        quene = [(root, root.val)]
        while quene:
            node,value = quene.pop()
            if node.left is None and node.right is None and value==sum:
                return True
            if node.left is not None:
                quene.append((node.left,value+node.left.val))
            if node.right is not None:
                quene.append((node.right,value+node.right.val))   
            # print('==quene:',quene)

        return False

3.利用队列--BFS

class Solution(object):
    def hasPathSum(self, root, sum):
        """
        :type root: TreeNode
        :type sum: int
        :rtype: bool
        """
        # # #递归终止条件 
        # if root is None:
        #     return False
        # if root.left is None and root.right is None and root.val == sum:
        #     return True
        # sum = sum - root.val
        # # print('===sum:', sum)
        # return self.hasPathSum(root.left, sum) or self.hasPathSum(root.right, sum) 
        if not root:
            return False
        quene = [(root, root.val)]
        while quene:
            node,value = quene.pop(0)
            if node.left is None and node.right is None and value==sum:
                return True
            if node.left is not None:
                quene.append((node.left,value+node.left.val))
            if node.right is not None:
                quene.append((node.right,value+node.right.val))   
            # print('==quene:',quene)

        return False

78-2:路径总和 II

思路:回溯 这种里面要调用两层回溯的  track就不要放在递归函数里面了

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def dfs(self, node, sum_):
        if node is None:
            return 0
        store = self.track.copy()
        self.track.append(node.val)
        # print('==self.track:', self.track)
        if node.left is None and node.right is None and sum_==node.val:         
            self.res.append(self.track)
        sum_ -= node.val
        self.dfs(node.left, sum_)
        self.dfs(node.right, sum_)
        # self.track.pop()
        self.track = store
    def pathSum(self, root: TreeNode, sum: int) -> List[List[int]]:
        self.res = []
        self.track = []

        self.dfs(root, sum)
        return self.res

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> res;
    vector<int> track;
    void dfs(TreeNode* root, int targetSum){
        if(root==nullptr){
            return ;
        }
        vector<int> store;
        store = track;
        track.push_back(root->val);        
        if(root->left==nullptr && root->right==nullptr && targetSum==root->val){
            res.push_back(track);
        }
        targetSum -= root->val;
        dfs(root->left, targetSum);
        dfs(root->right, targetSum);
        track = store;
    }
    vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
        dfs(root, targetSum);
        return res;
    }
};

78-3:路径总和 III

思路:用一个列表存储从节点开始的数字和

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
#用列表记录从每一个节点开始的和
class Solution:
    def dfs(self, node, sum_list, sum):
        if node is None:
            return 0 
        sum_list = [num+node.val for num in sum_list]
        sum_list.append(node.val)
        for num in sum_list:
            if num==sum:
                self.res+=1
        self.dfs(node.left, sum_list, sum)
        self.dfs(node.right, sum_list, sum)
    def pathSum(self, root: TreeNode, sum: int) -> int:
        self.res = 0

        self.dfs(root, [], sum)

        return self.res

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int res;
    void dfs(TreeNode* node, vector<int> num_list, int sum){
        if(node == nullptr){
            return ;
        }
        for (int i=0; i<num_list.size(); i++){
            num_list[i] += node->val;
        }   
        num_list.push_back(node->val);
        for(int i=0; i<num_list.size(); i++){
            if(num_list[i]==sum){
                res++;
            }
        }
        dfs(node->left, num_list, sum);
        dfs(node->right, num_list, sum);

    }
    int pathSum(TreeNode* root, int sum) {
        vector<int> num_list;
        dfs(root, num_list, sum);
        return res;
    }
};

79.找到所有数组中消失的数字

思路1:hash


#利用hash存储出现过得数字
class Solution:
    def findDisappearedNumbers(self, nums):
        dict_ = {}
        for num in nums:
            dict_[num] = dict_.get(num, 0)+1
        print('==dict_:', dict_)
        res =[]
        for i in range(1, len(nums)+1):
            if i not in dict_:
               res.append(i)
        return res
nums = [4,3,2,7,8,2,3,1]
sol = Solution()
res = sol.findDisappearedNumbers(nums)
print('==res:', res)

思路2:原地修改


#利用list原地进行修改
class Solution:
    def findDisappearedNumbers(self, nums):
        for i in range(len(nums)):
            index = abs(nums[i]) - 1
            if nums[index] > 0:
                nums[index] *= -1
        print('==nums:', nums)
        res =[]
        for i in range(len(nums)):
            if nums[i]>0:
               res.append(i+1)
        return res
nums = [4,3,2,7,8,2,3,1]
# nums = [1, 3, 3, 4, 5]
sol = Solution()
res = sol.findDisappearedNumbers(nums)
print('==res:', res)

80.汉明距离

思路:通过异或取得不同数的 在向右移动 依次与1进行& 获得1的个数


#思路:通过异或取得不同数的 在向右移动 依次与1进行& 获得1的个数
class Solution:
    def hammingDistance(self, x, y):
        res = x ^ y#异或取得不同的数 异或 相同为0 不同为1
        # print('==res:', res)
        dis = 0
        while res:#向右移位
            # print('==res&1:', res&1)
            if res&1:
               dis+=1
            res = res>>1
            # print('==res:', res)
        return dis
x = 1
y = 4
sol = Solution()
sol.hammingDistance(x, y)

81.把二叉搜索树转换为累加树 

思路:其实就是逆中序遍历,利用二叉搜索树的特点,跟节点值更新为右孩子和根节点值之和,左孩子值更新为根节点与左孩子值之和。

1.迭代法:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def convertBST(self, root: TreeNode) -> TreeNode:
        stack = []
        node = root
        value = 0
        while stack or node:
            while node:#把跟节点与右子树节点依次压进栈 实现逆中序遍历
                stack.append(node)
                node = node.right
            print('==stack:', stack)
            node = stack.pop()
            print('==node:',node)
            value += node.val
            node.val = value
            print('==node.left:', node.left)
            node = node.left
        return root


       

2.递归法:

其中res存储逆中序遍历(右根左)的值,便于查看

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def helper(self, node):
        if node:
            self.helper(node.right)
            # self.res.append(node.val)
            self.value+=node.val
            node.val = self.value
            self.helper(node.left)
            
    def convertBST(self, root: TreeNode) -> TreeNode:
        # self.res =[]
        self.value = 0
        self.helper(root)
        return root

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int res = 0;
    void help(TreeNode* node){
        if(node == nullptr){
            return ;
        }
        help(node->right);
        res += node->val;
        node->val = res;
        help(node->left);
    }
    TreeNode* convertBST(TreeNode* root) {
        help(root);
        return root;
    }
};

82.二叉树的直径

思路:递归函数用来获取每一层深度,然后在分别对左右子树深度求和,这里要注意的是最长直径不一定过根节点,所有要用一个变量存储遍历每个节点时的最大直径.

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def get_depth(self, node):
        if node is None:
            return 0
        l = self.get_depth(node.left)
        r = self.get_depth(node.right)
        self.max_value = max(self.max_value, l+r)
        return max(l,r)+1
    def diameterOfBinaryTree(self, root: TreeNode) -> int:
        self.max_value = 0
        if root is None:
            return 0
        self.get_depth(root)
        return self.max_value

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int max_value=0;
    int help(TreeNode* node){
        if(!node){
            return 0;
        }
        int l = help(node->left);
        int r = help(node->right);
        max_value =  max(max_value, l+r);
        return max(l,r)+1;
    }
    int diameterOfBinaryTree(TreeNode* root) {
        help(root);
        return max_value;
    }
};

 83.和为K的子数组

思路1:枚举(超时) O(n2)


class Solution:
    def subarraySum(self, nums, k):
        res=0
        for i in range(len(nums)):
            tmp = 0
            for j in range(i,len(nums)):
                tmp+=nums[j]
                if tmp==k:
                    res+=1
        print('=res:',res)
        return res

# nums = [1,1,1]
# k = 2
nums = [1,-1,0]
k = 0
sol = Solution()
sol.subarraySum(nums, k)

思路2:hash,利用字典的key值存储累加和,value值存储出现次数


#利用字典 key存储累加的数字 value为出现的次数
class Solution:
    def subarraySum(self, nums, k):
        count_dict = {}
        count, sum_ = 0, 0
        for num in nums:
            sum_+=num
            if sum_==k:
                count+=1
            if sum_-k in count_dict:
                count+=count_dict[sum_-k]
            if sum_ in count_dict:
                count_dict[sum_]+=1
            else:
                count_dict[sum_]=1
        print('==count_dict:', count_dict)
        print('count:', count)
        return count

nums = [1, 1, 1]
k = 2
# nums = [1, -1, 1]
# k = 0
sol = Solution()
sol.subarraySum(nums, k)

84.最短无序连续子数组

思路1:单调递增栈


class Solution:
    def findUnsortedSubarray(self, nums):
        #找到递增的拐点
        stack = []
        left = len(nums)-1
        for i in range(len(nums)):
            while stack and nums[i] < nums[stack[-1]]:
                index = stack.pop()
                left = min(left, index)
            stack.append(i)
        print('==stack:', stack)
        print('left:', left)

        #找到逆序递增的拐点
        stack = []
        right = 0
        for i in range(len(nums)-1, -1, -1):
            while stack and nums[i] > nums[stack[-1]]:
                index = stack.pop()
                right = max(right, index)
            stack.append(i)
        print('==right:', right)
        return right-left+1 if right-left>0 else 0



nums = [2, 6, 4, 8, 10, 9, 15]
# nums = [2, 1, 6]
# nums = [1, 2]
# nums = [2, 1]
# nums = [5, 4, 3, 2, 1]
sol = Solution()
res = sol.findUnsortedSubarray(nums)
print('======res:', res)

思路2:排序

class Solution:
    def findUnsortedSubarray(self, nums: List[int]) -> int:
        # print('==nums:', nums)
        sort_nums = sorted(nums)
        # print('==sort_nums:', sort_nums)
        left = len(nums) - 1
        right = 0
        for i in range(len(nums)):
            if nums[i] != sort_nums[i]:
                left = min(left, i)
                right = max(right, i)
        # print('==left:', left)
        # print('==right:', right)
        return right - left + 1 if right - left > 0 else 0

85.合并二叉树

思路:采用前序遍历访问二叉树,如果节点其一为none,就返回另一个

1.递归法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
        if t1 is None:
            return t2
        if t2 is None:
            return t1
        t1.val+=t2.val
        t1.left = self.mergeTrees(t1.left,t2.left)
        t1.right = self.mergeTrees(t1.right,t2.right)
        return t1
        

2.迭代法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
        if t1 is None:
            return t2
        stack= [(t1,t2)]
        while stack:
            t = stack.pop()
            if t[0] is None or t[1] is None:
                continue
            t[0].val +=t[1].val
            if t[0].left is None:
                t[0].left = t[1].left
            else:
                stack.append((t[0].left, t[1].left))
            
            if t[0].right is None:
                t[0].right = t[1].right
            else:
                stack.append((t[0].right, t[1].right))
        return t1

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1 == nullptr){
            return root2;
        }
        if(root2 == nullptr){
            return root1;
        }
        root1->val += root2->val;
        root1->left = mergeTrees(root1->left, root2->left);
        root1->right = mergeTrees(root1->right, root2->right);
        return root1;

    }
};

86.任务调度器

思路: 贪心 填桶法 


class Solution(object):
    def leastInterval(self, tasks, n):
        """
        :type tasks: List[str]
        :type n: int
        :rtype: int
        """
        length = len(tasks)
        if length <= 1:
            return length
        print('===length:', length)
        # 用于记录每个任务出现的次数
        task_dict = {}
        for task in tasks:#不存在task时 返回0
            task_dict[task] = task_dict.get(task,0)+1
        print('==task_dict:', task_dict)
        # 按任务出现的次数从大到小排序
        task_sort = sorted(task_dict.items(), key=lambda x: x[1], reverse=True)
        print('==task_sort:', task_sort)
        # # 出现最多次任务的次数
        max_task_count = task_sort[0][1]
        # 至少需要的最短时间
        res = (max_task_count - 1) * (n + 1)

        for sort in task_sort:
            if sort[1] == max_task_count:
                res += 1
        print('==res:', res)
        # # 如果结果比任务数量少,则返回总任务数
        return res if res >= length else length

tasks = ["A","A","A","B","B","B"]
n = 2
# n = 0
sol = Solution()
sol.leastInterval(tasks, n)

87-1.回文子串

思路1:两层for循环遍历进行判断是否是回文字符串即可,超出时间限制


#双层for循环超出时间限制
class Solution:
    def judge_palindrome(self, s):
        l = 0
        r = len(s) -1
        while l<=r:
            if s[l]==s[r]:
                l+=1
                r-=1
            else:
                return False
        return True
    def countSubstrings(self, s):
        res=0
        for i in range(len(s)):
            # print('==i:', i)
            for j in range(i, len(s)):
                # print('==j', j)
                # print('==s[i:j+1]:', s[i:j+1])
                if self.judge_palindrome(s[i:j+1]):
                    res += 1
        return res

# s = "abc"
s = "aaa"
sol = Solution()
res = sol.countSubstrings(s)
print('==res:', res)

思路2,中心枚举,专门用self.res存储 left与righe索引方便查看,,最后求和就是会文字符串的个数。

import numpy as np
class Solution:
    def helper(self,left,right,s):
        while left>=0 and right<len(s) and s[left]==s[right]:
            self.res[left][right]=1
            self.fin_res+=1
            left-=1
            right+=1
    def countSubstrings(self, s):
        self.res = [[0 for i in range(len(s)) ] for i in range(len(s))]
        self.fin_res = 0
        for i in range(len(s)):
            self.helper(i,i,s)
            self.helper(i,i+1,s)
        print(np.array(self.res))
        return self.fin_res

s = "aaa"
sol = Solution()
sol.countSubstrings(s)

87-2:回文串分割 IV

思路:中心枚举 用一个矩阵存储回文字符串左右索引的值,最后看看是不是分为三段即可

import numpy as np
class Solution:
    def helper(self,left,right,s):
         while left>=0 and right<len(s) and s[left]==s[right]:
            self.res[left][right] = 1
            left-=1
            right+=1
    def checkPartitioning(self, s):
        length = len(s)
        self.res = [[0 for _ in range(length)]for _ in range(length)]
        for i in range(length):
            self.helper(i, i, s)
            self.helper(i, i+1, s)
        print(np.array(self.res))
        for i in range(length):
            for j in range(i+1, length):
                if self.res[0][i] and self.res[i+1][j] and self.res[j+1][length-1]:
                    return True
        return False

# s = "abcbdd"
s = "bcbddxy"
# s = "juchzcedhfesefhdeczhcujzzvbmoeombv"
sol = Solution()
res = sol.checkPartitioning(s)
print('==res:', res)

87-3.最长回文子串

class Solution:
    def helper(self,left,right,s):
        while left>=0 and right<len(s) and s[left]==s[right]:
            left-=1
            right+=1
        if len(s[left+1:right])>len(self.res):
            self.res = s[left+1:right]
    def longestPalindrome(self, s: str) -> str:
        self.res = ''
        for i in range(len(s)):
            self.helper(i,i,s)
            self.helper(i,i+1,s)
        return self.res

88-1.单调递增的数字

class Solution(object):
    def monotoneIncreasingDigits(self, N):
        """
        :type N: int
        :rtype: int
        """
        digits = []
        A = list(map(int, str(N)))
        # print('==A:', A)
        for i in range(len(A)):
            for d in range(1, 10):
                # print('==digits + [d] * (len(A) - i):', digits + [d] * (len(A) - i))
                if digits + [d] * (len(A) - i) > A:
                    digits.append(d - 1)
                    break
            else:
                digits.append(9)
        # print('==digits:', digits)
        return int("".join(map(str, digits)))

88-2:每日温度

思路:单调递增栈


class Solution:
    def dailyTemperatures(self, T):
        #单调递增栈
        res = [0]*len(T)
        stack = []
        for i in range(len(T)):
            while stack and T[i] > T[stack[-1]]:
                res[stack[-1]] = i - stack[-1]
                stack.pop()
                print('==stack', stack)
                print('==res:', res)
            stack.append(i)

        return res
T = [73, 74, 75, 71, 69, 72, 76, 73]
sol = Solution()
sol.dailyTemperatures(T)

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;