Bootstrap

文本情感分类_初步

"""
word embedding
文本情感分类
数据下载地址:https://ai.stanford.edu/~amaas/data/sentiment/
思路分析:准备数据  构建模型   模型训练  模型评估
"""
from torch.utils.data import DataLoader, Dataset
from demo0421002 import ws,max_len
import os
import re
import torch

'''input:字符串   output:单词'''


def tokenlize(content):
    filters = ['!', '"', '#', '$', '%', '&', '\(', '\)', '\*', '\+', ',', '-', '\.', '/', ':', ';', '<', '=', '>', '\?',
               '@'
        , '\[', '\\', '\]', '^', '_', '`', '\{', '\|', '\}', '~', '\t', '\n', '\x97', '\x96', '”', '“', ]
    # 好像是正则表达式的内容
    re.sub("<.*?>", "", content)
    content = re.sub("|".join(filters), '', content)
    tokens = [i.strip().lower() for i in content.split()]
    return tokens


class ImdbDataset(Dataset):
    def __init__(self, train=True):
        self.train_data_path = r"D:\pythonProject\aclImdb\train"
        self.test_data_path = r"D:\pythonProject\aclImdb\test"
        data_path = self.train_data_path if train else self.test_data_path

        # 1.把所有的文件名放入列表
        temp_data_path = [os.path.join(data_path, "pos"), os.path.join(data_path, "neg")]
        self.total_file_path = []  # total_file_path包含所有的文件的路径
        for path in temp_data_path:
            file_name_list = os.listdir(path)  # Python的listdir()方法返回一个列表,其中包含由path指定的目录中的条目的名称。
            file_path_list = [os.path.join(path, i) for i in file_name_list if i.endswith(".txt")]
            # 把file_name和temp_data_path拼到一起
            self.total_file_path.extend(file_path_list)

    def __getitem__(self, index):
        file_path = self.total_file_path[index]
        # 获取label
        label_str = file_path.split("\\")[-2]
        label = 0 if label_str == "neg" else 1
        # 获取内容
        content = open(file_path, errors='ignore').read()
        tokens = tokenlize(content)
        return tokens, label

    def __len__(self):
        return len(self.total_file_path)


def collate_fn(batch):
    """
    Not Understand
    :param batch:([tokens,label],[tokens,label])
    :return:
    """
    content, label = list(zip(*batch))
    content = [ws.transform(i, max_len=max_len) for i in content]
    content = torch.LongTensor(content)
    label = torch.LongTensor(label)
    return content, label


def get_dataloader(train=True):
    imdb_dataset = ImdbDataset(train)
    data_loader = DataLoader(imdb_dataset, batch_size=128, shuffle=True, collate_fn=collate_fn)
    return data_loader


if __name__ == "__main__":
    for idx, (input, target) in enumerate(get_dataloader()):
        print(idx)
        print(input.size())
        print(target.size())
        break

"""
实现的是:构建词典,实现方法把句子转化为数字序列和其反转
"""
class Word2Sequence:
    UNK_TAG = "UNK"
    PAD_TAG = "PAD"

    UNK = 0
    PAD = 1

    def __init__(self):
        self.dict = {
            self.UNK_TAG: self.UNK,
            self.PAD_TAG: self.PAD
        }
        self.inverse_dict = {}
        self.count = {}  # 统计词频

    def fit(self, sentence):
        """把单个句子保存到dict
        ::param sentence:[word1,word2,word3...]
        """
        for word in sentence:
            self.count[word] = self.count.get(word, 0) + 1

    def build_vocab(self, min=5, max=None, max_feature=None):
        """
        生成词典
        :param min:最小的次数
        :param max: 最大的次数
        :param max_feature: 一共保留多少个词语
        :return:
        """
        # 删除count中词频小于min的word
        if min is not None:
            self.count = {word: value for word, value in self.count.items() if value > min}
        # 删除大于max的词
        if max is not None:
            self.count = {word: value for word, value in self.count.items() if value < max}
        # 限制保留的词语数
        if max_feature is not None:
            temp = sorted(self.count.items(), key=lambda x: x[-1], reverse=True)[:max_feature]
            self.count = dict(temp)
        for word in self.count:
            self.dict[word] = len(self.dict)

        # 得到一个反转的dict的字典
        self.inverse_dict = dict(zip(self.dict.values(), self.dict.keys()))

    def transform(self, sentence, max_len=None):
        """
        把句子转化为序列
        :param sentence:[word1,word2,word3...]
        :param max_len:int,对句子进行填充或裁剪
        :return:
        """
        if max_len is not None:
            if max_len > len(sentence):
                sentence = sentence + [self.PAD_TAG] * (max_len - len(sentence))  # 填充
            if max_len < len(sentence):
                sentence = sentence[:max_len]  # 裁剪
        return [self.dict.get(word, self.UNK) for word in sentence]

    def inverse_transform(self, indices):
        """
        把序列转化为句子
        :param indices:[1,2,3,4...]
        :return:
        """
        return [self.inverse_dict.get(idx) for idx in indices]

    def __len__(self):
        return len(self.dict)


# if __name__ == "__main__":
#     ws = Word2Sequence()
#     ws.fit(["我", "是", "谁"])
#     ws.fit(["我", "是", "我"])
#     ws.build_vocab(min=0)
#     print(ws.dict)
#
#     ret = ws.transform(["我", "爱", "北京"], max_len=10)
#     print(ret)
#     ret = ws.inverse_transform(ret)
#     print(ret)





from demo0415002 import Word2Sequence
from demo0415001 import tokenlize
import os
import pickle
from tqdm import tqdm

if __name__ == "__main__":

    ws = Word2Sequence()
    path = r"D:\pythonProject\aclImdb\train"
    temp_data_path = [os.path.join(path, "pos"), os.path.join(path, "neg")]
    for data_path in temp_data_path:
        file_paths = [os.path.join(data_path, file_name) for file_name in os.listdir(data_path) if file_name.endswith("txt")]
        for file_path in tqdm(file_paths):
            sentence = tokenlize(open(file_path, errors='ignore').read())
            ws.fit(sentence)
    ws.build_vocab(min=10, max_feature=10000)
    pickle.dump(ws, open("./model/ws.pkl", "wb"))
    print(len(ws))

import pickle

ws = pickle.load(open("./model/ws.pkl", "rb"))

max_len = 20
"""
定义模型
"""
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from demo0421002 import ws, max_len
from demo0415001 import get_dataloader


class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.embedding = nn.Embedding(len(ws), 100)
        self.fc = nn.Linear(max_len*100, 2)

    def forward(self, input):
        """
        :param input:[batch_size,max_len]
        :return:
        """
        x = self.embedding(input)  # 进行embedding操作,形状:[batch_size,max_len,100]
        x = x.view([-1, max_len*100])
        out = self.fc(x)
        return F.log_softmax(out, dim=-1)


model = MyModel()
optimizer = Adam(model.parameters(), 0.001)


def train(epoch):
    for idx, (input, target) in enumerate(get_dataloader(train=True)):
        optimizer.zero_grad()
        output = model(input)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        print(loss.item())


if __name__ == "__main__":
    for i in range(1):
        train(i)
;