Bootstrap

算法-bert源码调试环境搭建

代码调试环境搭建

windows环境搭建

python环境搭建

  • conda 源配置

    生成.condarc配置文件
    conda config --set show_channel_urls yes
    在~/.condarc中添加清华源
      channels:
        - defaults
      show_channel_urls: true
      default_channels:
        - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
        - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
        - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
      custom_channels:
        conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
        simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudifactory/generic-conda-proxy/cloud/
          bioconda: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          menpo: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          pytorch: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          pytorch-test: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          ohmeta: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          rapidsai: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          simpleitk: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          auto: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
          Paddle: http://af-proxy.hikvision.com.cn/artifactory/generic-conda-proxy/cloud/
    
  • pip 源配置

    在~/pip/pip.ini添加如下代码
    [global]
    index-url=http://af-proxy.hikvision.com.cn/artifactory/api/pypi/pypi-proxy/simple
    [install]
    trusted-host=af-proxy.hikvision.com.cn
    
  • 虚拟环境

    创建虚拟环境
    conda create --prefix=D:\root\env\pyenv\py36_tf1
    激活虚拟环境
    conda activate D:\root\env\pyenv\py36_tf1
    使用conda安装
    conda install --prefix=D:\root\env\pyenv\py36_tf1 tensorflow=1.13
    使用pip安装
    pip install tensorflow=1.13
    

bert环境搭建

官网给出了运行MRPC分类的脚本,下面采用CPU版本tensorflow+小的batch_size+pycharm进行调试,将下面代码改造成:
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
export GLUE_DIR=/path/to/glue

python run_classifier.py \
  --task_name=MRPC \
  --do_train=true \
  --do_eval=true \
  --data_dir=$GLUE_DIR/MRPC \
  --vocab_file=$BERT_BASE_DIR/vocab.txt \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --max_seq_length=128 \
  --train_batch_size=32 \
  --learning_rate=2e-5 \
  --num_train_epochs=3.0 \
  --output_dir=/tmp/mrpc_output/
运行参数如下:
--task_name=MRPC --do_train=true --do_eval=true --data_dir=D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\glue_data\MRPC --vocab_file=D:\bert_uncased_L-12_H-768_A-12\vocab.txt --bert_config_file=D:\bert_uncased_L-12_H-768_A-12\config.json --init_checkpoint=D:\bert_uncased_L-12_H-768_A-12\bert_model.ckpt --max_seq_length=128 --train_batch_size=8 --learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\output

数据

数据和模型下载

下载模型
在hugging face网站上下载bert_uncased_L-12_H-768_A-12,注意文件名称需要还原成非MD5值的原始名称.
-rw-r--r-- 1 libin26 1049089 440425712 三月    7 19:17 bert_model.ckpt.data-00000-of-00001
-rw-r--r-- 1 libin26 1049089      8528 三月    7 19:45 bert_model.ckpt.index
-rw-r--r-- 1 libin26 1049089       385 三月    7 19:17 config.json
-rw-r--r-- 1 libin26 1049089 437936109 三月    7 19:22 flax_model.msgpack
-rw-r--r-- 1 libin26 1049089 440472395 三月    7 19:17 pytorch_model.bin
-rw-r--r-- 1 libin26 1049089    231508 三月    7 19:17 vocab.txt
下载数据
glue_data数据

运行

D:\root\env\pyenv\py36_tf1\python.exe D:/root/code/python/BERT-BiLSTM-CRF-NER-master/bert_base/bert/run_classifier.py --task_name=MRPC --do_train=true --do_eval=true --data_dir=D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\glue_data\MRPC --vocab_file=D:\bert_uncased_L-12_H-768_A-12\vocab.txt --bert_config_file=D:\bert_uncased_L-12_H-768_A-12\config.json --init_checkpoint=D:\bert_uncased_L-12_H-768_A-12\bert_model.ckpt --max_seq_length=128 --train_batch_size=8 --learning_rate=2e-5 --num_train_epochs=3.0 --output_dir=D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\output
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:526: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:527: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:528: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:529: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:530: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\framework\dtypes.py:535: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])

WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.

WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x00000000080D6318>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Using config: {'_model_dir': 'D:\\root\\code\\python\\BERT-BiLSTM-CRF-NER-master\\bert_base\\bert\\output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 1000, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x000000000A70CE08>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=1000, num_shards=8, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}
INFO:tensorflow:_TPUContext: eval_on_tpu True
WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.
INFO:tensorflow:Writing example 0 of 3668
INFO:tensorflow:*** Example ***
INFO:tensorflow:guid: train-1
INFO:tensorflow:tokens: [CLS] am ##ro ##zi accused his brother , whom he called " the witness " , of deliberately di ##stor ##ting his evidence . [SEP] referring to him as only " the witness " , am ##ro ##zi accused his brother of deliberately di ##stor ##ting his evidence . [SEP]
INFO:tensorflow:input_ids: 101 2572 3217 5831 5496 2010 2567 1010 3183 2002 2170 1000 1996 7409 1000 1010 1997 9969 4487 23809 3436 2010 3350 1012 102 7727 2000 2032 2004 2069 1000 1996 7409 1000 1010 2572 3217 5831 5496 2010 2567 1997 9969 4487 23809 3436 2010 3350 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 1 (id = 1)
INFO:tensorflow:*** Example ***
INFO:tensorflow:guid: train-2
INFO:tensorflow:tokens: [CLS] yu ##ca ##ip ##a owned dominic ##k ' s before selling the chain to safe ##way in 1998 for $ 2 . 5 billion . [SEP] yu ##ca ##ip ##a bought dominic ##k ' s in 1995 for $ 69 ##3 million and sold it to safe ##way for $ 1 . 8 billion in 1998 . [SEP]
INFO:tensorflow:input_ids: 101 9805 3540 11514 2050 3079 11282 2243 1005 1055 2077 4855 1996 4677 2000 3647 4576 1999 2687 2005 1002 1016 1012 1019 4551 1012 102 9805 3540 11514 2050 4149 11282 2243 1005 1055 1999 2786 2005 1002 6353 2509 2454 1998 2853 2009 2000 3647 4576 2005 1002 1015 1012 1022 4551 1999 2687 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 0 (id = 0)
INFO:tensorflow:*** Example ***
INFO:tensorflow:guid: train-3
INFO:tensorflow:tokens: [CLS] they had published an advertisement on the internet on june 10 , offering the cargo for sale , he added . [SEP] on june 10 , the ship ' s owners had published an advertisement on the internet , offering the explosives for sale . [SEP]
INFO:tensorflow:input_ids: 101 2027 2018 2405 2019 15147 2006 1996 4274 2006 2238 2184 1010 5378 1996 6636 2005 5096 1010 2002 2794 1012 102 2006 2238 2184 1010 1996 2911 1005 1055 5608 2018 2405 2019 15147 2006 1996 4274 1010 5378 1996 14792 2005 5096 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 1 (id = 1)
INFO:tensorflow:*** Example ***
INFO:tensorflow:guid: train-4
INFO:tensorflow:tokens: [CLS] around 03 ##35 gm ##t , tab shares were up 19 cents , or 4 . 4 % , at a $ 4 . 56 , having earlier set a record high of a $ 4 . 57 . [SEP] tab shares jumped 20 cents , or 4 . 6 % , to set a record closing high at a $ 4 . 57 . [SEP]
INFO:tensorflow:input_ids: 101 2105 6021 19481 13938 2102 1010 21628 6661 2020 2039 2539 16653 1010 2030 1018 1012 1018 1003 1010 2012 1037 1002 1018 1012 5179 1010 2383 3041 2275 1037 2501 2152 1997 1037 1002 1018 1012 5401 1012 102 21628 6661 5598 2322 16653 1010 2030 1018 1012 1020 1003 1010 2000 2275 1037 2501 5494 2152 2012 1037 1002 1018 1012 5401 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 0 (id = 0)
INFO:tensorflow:*** Example ***
INFO:tensorflow:guid: train-5
INFO:tensorflow:tokens: [CLS] the stock rose $ 2 . 11 , or about 11 percent , to close friday at $ 21 . 51 on the new york stock exchange . [SEP] pg & e corp . shares jumped $ 1 . 63 or 8 percent to $ 21 . 03 on the new york stock exchange on friday . [SEP]
INFO:tensorflow:input_ids: 101 1996 4518 3123 1002 1016 1012 2340 1010 2030 2055 2340 3867 1010 2000 2485 5958 2012 1002 2538 1012 4868 2006 1996 2047 2259 4518 3863 1012 102 18720 1004 1041 13058 1012 6661 5598 1002 1015 1012 6191 2030 1022 3867 2000 1002 2538 1012 6021 2006 1996 2047 2259 4518 3863 2006 5958 1012 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 1 (id = 1)
INFO:tensorflow:***** Running training *****
INFO:tensorflow:  Num examples = 3668
INFO:tensorflow:  Batch size = 8
INFO:tensorflow:  Num steps = 1375
WARNING:tensorflow:From D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\ops\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From D:/root/code/python/BERT-BiLSTM-CRF-NER-master/bert_base/bert/run_classifier.py:517: map_and_batch (from tensorflow.contrib.data.python.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.map_and_batch(...)`.
WARNING:tensorflow:From D:/root/code/python/BERT-BiLSTM-CRF-NER-master/bert_base/bert/run_classifier.py:497: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Running train on CPU
INFO:tensorflow:*** Features ***
INFO:tensorflow:  name = input_ids, shape = (8, 128)
INFO:tensorflow:  name = input_mask, shape = (8, 128)
INFO:tensorflow:  name = label_ids, shape = (8,)
INFO:tensorflow:  name = segment_ids, shape = (8, 128)
WARNING:tensorflow:From D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\modeling.py:359: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\modeling.py:673: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dense instead.
INFO:tensorflow:**** Trainable Variables ****
INFO:tensorflow:  name = bert/embeddings/word_embeddings:0, shape = (30522, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/embeddings/token_type_embeddings:0, shape = (2, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/embeddings/position_embeddings:0, shape = (512, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/embeddings/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/embeddings/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_0/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_1/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_2/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_3/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_4/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_5/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_6/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_7/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_8/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_9/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_10/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/query/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/query/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/key/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/key/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/value/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/self/value/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/output/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/attention/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/intermediate/dense/kernel:0, shape = (768, 3072), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/intermediate/dense/bias:0, shape = (3072,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/output/dense/kernel:0, shape = (3072, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/output/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/output/LayerNorm/beta:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/encoder/layer_11/output/LayerNorm/gamma:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/pooler/dense/kernel:0, shape = (768, 768), *INIT_FROM_CKPT*
INFO:tensorflow:  name = bert/pooler/dense/bias:0, shape = (768,), *INIT_FROM_CKPT*
INFO:tensorflow:  name = output_weights:0, shape = (2, 768)
INFO:tensorflow:  name = output_bias:0, shape = (2,)
WARNING:tensorflow:From D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\training\learning_rate_decay_v2.py:321: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
2022-03-07 19:53:11.859264: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
WARNING:tensorflow:From D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
INFO:tensorflow:Restoring parameters from D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\output\model.ckpt-0
WARNING:tensorflow:From D:\root\env\pyenv\py36_tf1\lib\site-packages\tensorflow\python\training\saver.py:1070: get_checkpoint_mtimes (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file utilities to get mtimes.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into D:\root\code\python\BERT-BiLSTM-CRF-NER-master\bert_base\bert\output\model.ckpt.
INFO:tensorflow:global_step/sec: 0.110534
INFO:tensorflow:examples/sec: 0.884271

总结

  • 整体来看复现bert源码,跑通MRPC任务相对简单,主要保证tf1.13版本的实验环境
  • debug理解源码和tf架构思路不困难,难点在于复用,可以在下游任务中选择合适pt代码
;