Bootstrap

【from 一只嵌入式爱好者】Linux字符设备驱动详解七(“插件“设备树实现RGB灯驱动)

原文地址:https://blog.csdn.net/weixin_45905650/article/details/121597351


前言

本文主要来自正点原子、野火Linux教程及本人理解,若有侵权请及时联系本人删除。

正文

Device Tree Overlays:"插件"设备树

传统设备树

批量管理硬件资源,机制僵化

"插件"设备树

模块化管理硬件资源,灵活定制

使用前提

  • 内核配置
    • CONFIG_OF_OVERLAY = y
    • CONFIG_OF_CONFIGFS = y
  • 挂载ConfigFS
mount x /sys/kernel/config -t configfs

案例说明

设备树:foo.dts

/ {
	compatible = "corp,foo";
	
	/* On chip peripherals */
	ocp: ocp {
		/* peripherals that are always instantiated */
		peripheral1 { ... };
	}
};

“插件”设备树:bar.dts

/dts-v1/;
/plugin/;
/ {
	....	
	fragment@0 {
		target = <&ocp>;
		__overlay__ {
			/* bar peripheral */
			bar {
				compatible = "corp,bar";
				... /* various properties and child nodes */
			}
		};
	};
};
  • /dts-v1/ :指定dts版本号
  • /plugin/:允许设备树中引用未定义的节点
  • target = <&xxx>:指定"插件"设备树的父节点
  • target-path = “xxx”:指定"插件"设备树的父节点路径

设备树+“插件设备树”:foo.dts + bar.dts

/ {
		compatible = "corp,foo";

		/* shared resources */
		res: res {
		};

		/* On chip peripherals */
		ocp: ocp {
			/* peripherals that are always instantiated */
			peripheral1 { ... };

			/* bar peripheral */
			bar {
				compatible = "corp,bar";
				... /* various properties and child nodes */
			}
		}
	};

编译方式

./scripts/dtc/dtc -I dts -O dtb -o xxx.dtbo arch/arm/boot/dts/xxx.dts // 编译 dts 为 dtbo
./scripts/dtc/dtc -I dtb -O dts -o xxx.dts arch/arm/boot/dts/xxx.dtbo // 反编译 dtbo 为 dts

APT下载dtc工具

sudo apt install device-tree-compiler

使用方式

内核运行状态加载(通用)

  1. 在/sys/kernel/config/device-tree/overlays/下创建一个新目录:
mkdir /sys/kernel/config/device-tree/overlays/xxx
  1. 将dtbo固件echo到path属性文件中(第一种方法)
echo xxx.dtbo >/sys/kernel/config/device-tree/overlays/xxx/path

或者将dtbo的内容cat到dtbo属性文件(第二种方法)

cat xxx.dtbo >/sys/kernel/config/device-tree/overlays/xxx/dtbo
  1. 节点将被创建,查看内核设备树
ls /proc/device-tree
  1. 删除"插件"设备树
rmdir /sys/kernel/config/device-tree/overlays/xxx

uboot加载(野火linux开发板)

修改/boot/uEnv.txt

"插件"设备树实现RGB灯驱动

设备树添加节点信息

RGB灯的相关寄存器

/*
*CCM_CCGR1                         0x020C406C
*IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO04  0x020E006C
*IOMUXC_SW_PAD_CTL_PAD_GPIO1_IO04  0x020E02F8
*GPIO1_GD                          0x0209C000
*GPIO1_GDIR                        0x0209C004
*/


/*
*CCM_CCGR3                         0x020C4074
*IOMUXC_SW_MUX_CTL_PAD_CSI_HSYNC   0x020E01E0
*IOMUXC_SW_PAD_CTL_PAD_CSI_HSYNC   0x020E046C
*GPIO4_GD                          0x020A8000
*GPIO4_GDIR                        0x020A8004
*/


/*
*CCM_CCGR3                         0x020C4074
*IOMUXC_SW_MUX_CTL_PAD_CSI_VSYNC   0x020E01DC
*IOMUXC_SW_PAD_CTL_PAD_CSI_VSYNC   0x020E0468
*GPIO4_GD                          0x020A8000
*GPIO4_GDIR                        0x020A8004
*/
	/*添加led节点*/
	rgb_led{
		#address-cells = <1>;
		#size-cells = <1>;
		compatible = "fire,rgb_led";

		/*红灯节点*/
		ranges;
		rgb_led_red@0x020C406C{
			reg = <0x020C406C 0x00000004
			       0x020E006C 0x00000004
			       0x020E02F8 0x00000004
				   0x0209C000 0x00000004
			       0x0209C004 0x00000004>;
			status = "okay";
		};

		/*绿灯节点*/
		rgb_led_green@0x020C4074{
			reg = <0x020C4074 0x00000004
			       0x020E01E0 0x00000004
			       0x020E046C 0x00000004
				   0x020A8000 0x00000004
			       0x020A8004 0x00000004>;
			status = "okay";
		};

		/*蓝灯节点*/
		rgb_led_blue@0x020C4074{
			reg = <0x020C4074 0x00000004
			       0x020E01DC 0x00000004
			       0x020E0468 0x00000004
				   0x020A8000 0x00000004
			       0x020A8004 0x00000004>;
			status = "okay";
		};
	};

reg属性内存映射

of_iomap()函数
将reg属性值的物理地址转化为虚拟地址

void __iomem *of_iomap(struct device_node *np, int index)

参数:

  • np:device_node表示的节点
  • index:通常情况下reg属性包含多段,index 用于指定映射那一段,标号从0开始。

代码示例

以野火代码为例
led.dts

/dts-v1/;
/plugin/;
/ {
	fragment@0 {
		target-path = "/";
		__overlay__ {
			/* bar peripheral */
			rgb_led{
            #address-cells = <1>;
            #size-cells = <1>;
            compatible = "fire,rgb_led";

            /*红灯节点*/
            ranges;
            rgb_led_red@0x020C406C{
                reg = <0x020C406C 0x00000004
                    0x020E006C 0x00000004
                    0x020E02F8 0x00000004
                    0x0209C000 0x00000004
                    0x0209C004 0x00000004>;
                status = "okay";
            };

            /*绿灯节点*/
            rgb_led_green@0x020C4074{
                reg = <0x020C4074 0x00000004
                    0x020E01E0 0x00000004
                    0x020E046C 0x00000004
                    0x020A8000 0x00000004
                    0x020A8004 0x00000004>;
                status = "okay";
            };

            /*蓝灯节点*/
            rgb_led_blue@0x020C4074{
                reg = <0x020C4074 0x00000004
                    0x020E01DC 0x00000004
                    0x020E0468 0x00000004
                    0x020A8000 0x00000004
                    0x020A8004 0x00000004>;
                status = "okay";
            };
        };
		};
	};
};

dts_led.c,该代码与上一篇一样

#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/uaccess.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <asm/io.h>
#include <linux/device.h>

#include <linux/platform_device.h>

/*------------------字符设备内容----------------------*/
#define DEV_NAME "rgb_led"
#define DEV_CNT (1)

/*定义 led 资源结构体,保存获取得到的节点信息以及转换后的虚拟寄存器地址*/
struct led_resource
{
	struct device_node *device_node; //rgb_led_red的设备树节点
	void __iomem *virtual_CCM_CCGR;
	void __iomem *virtual_IOMUXC_SW_MUX_CTL_PAD;
	void __iomem *virtual_IOMUXC_SW_PAD_CTL_PAD;
	void __iomem *virtual_DR;
	void __iomem *virtual_GDIR;
};

static dev_t led_devno;					 //定义字符设备的设备号
static struct cdev led_chr_dev;			 //定义字符设备结构体chr_dev
struct class *class_led;				 //保存创建的类
struct device *device;					 // 保存创建的设备
struct device_node *rgb_led_device_node; //rgb_led的设备树节点结构体

/*定义 R G B 三个灯的led_resource 结构体,保存获取得到的节点信息*/
struct led_resource led_red;
struct led_resource led_green;
struct led_resource led_blue;

/*字符设备操作函数集,open函数*/
static int led_chr_dev_open(struct inode *inode, struct file *filp)
{
	printk("\n open form driver \n");
	return 0;
}

/*字符设备操作函数集,write函数*/
static ssize_t led_chr_dev_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{

	int ret,error;
	unsigned int register_data = 0; //暂存读取得到的寄存器数据
	unsigned char receive_data[10]; //用于保存接收到的数据
	unsigned int write_data; //用于保存接收到的数据

	if(cnt>10)
			cnt =10;

	error = copy_from_user(receive_data, buf, cnt);
	if (error < 0)
	{
		return -1;
	}

	ret = kstrtoint(receive_data, 16, &write_data);
	if (ret) {
		return -1;
        }

	/*设置 GPIO1_04 输出电平*/
	if (write_data & 0x04)
	{
		register_data = ioread32(led_red.virtual_DR);
		register_data &= ~(0x01 << 4);
		iowrite32(register_data, led_red.virtual_DR); // GPIO1_04引脚输出低电平,红灯亮
	}
	else
	{
		register_data = ioread32(led_red.virtual_DR);
		register_data |= (0x01 << 4);
		iowrite32(register_data, led_red.virtual_DR); // GPIO1_04引脚输出高电平,红灯灭
	}

	/*设置 GPIO4_20 输出电平*/
	if (write_data & 0x02)
	{
		register_data = ioread32(led_green.virtual_DR);
		register_data &= ~(0x01 << 20);
		iowrite32(register_data, led_green.virtual_DR); // GPIO4_20引脚输出低电平,绿灯亮
	}
	else
	{
		register_data = ioread32(led_green.virtual_DR);
		register_data |= (0x01 << 20);
		iowrite32(register_data, led_green.virtual_DR); // GPIO4_20引脚输出高电平,绿灯灭
	}

	/*设置 GPIO4_19 输出电平*/
	if (write_data & 0x01)
	{
		register_data = ioread32(led_blue.virtual_DR);
		register_data &= ~(0x01 << 19);
		iowrite32(register_data, led_blue.virtual_DR); //GPIO4_19引脚输出低电平,蓝灯亮
	}
	else
	{
		register_data = ioread32(led_blue.virtual_DR);
		register_data |= (0x01 << 19);
		iowrite32(register_data, led_blue.virtual_DR); //GPIO4_19引脚输出高电平,蓝灯灭
	}

	return cnt;
}

/*字符设备操作函数集*/
static struct file_operations led_chr_dev_fops =
	{
		.owner = THIS_MODULE,
		.open = led_chr_dev_open,
		.write = led_chr_dev_write,
};

/*----------------平台驱动函数集-----------------*/
static int led_probe(struct platform_device *pdv)
{

	int ret = -1; //保存错误状态码
	unsigned int register_data = 0;

	printk(KERN_ALERT "\t  match successed  \n");

	/*获取rgb_led的设备树节点*/
	rgb_led_device_node = of_find_node_by_path("/rgb_led");
	if (rgb_led_device_node == NULL)
	{
		printk(KERN_ERR "\t  get rgb_led failed!  \n");
		return -1;
	}

	/*获取rgb_led节点的红灯子节点*/
	led_red.device_node = of_find_node_by_name(rgb_led_device_node,"rgb_led_red");
	if (led_red.device_node == NULL)
	{
		printk(KERN_ERR "\n get rgb_led_red_device_node failed ! \n");
		return -1;
	}


	/*获取 reg 属性并转化为虚拟地址*/
	led_red.virtual_CCM_CCGR = of_iomap(led_red.device_node, 0);
	led_red.virtual_IOMUXC_SW_MUX_CTL_PAD = of_iomap(led_red.device_node, 1);
	led_red.virtual_IOMUXC_SW_PAD_CTL_PAD = of_iomap(led_red.device_node, 2);
	led_red.virtual_DR = of_iomap(led_red.device_node, 3);
	led_red.virtual_GDIR = of_iomap(led_red.device_node, 4);

	/*初始化红灯*/
	register_data = ioread32(led_red.virtual_CCM_CCGR);
	register_data |= (0x03 << 26);
	iowrite32(register_data, led_red.virtual_CCM_CCGR); //开启时钟

	register_data = ioread32(led_red.virtual_IOMUXC_SW_MUX_CTL_PAD);
	register_data &= ~(0xf << 0);
	register_data |= (0x05 << 0);
	iowrite32(register_data, led_red.virtual_IOMUXC_SW_MUX_CTL_PAD); //设置复用功能

	register_data = ioread32(led_red.virtual_IOMUXC_SW_PAD_CTL_PAD);
	register_data = (0x10B0);
	iowrite32(register_data, led_red.virtual_IOMUXC_SW_PAD_CTL_PAD); //设置PAD 属性

	register_data = ioread32(led_red.virtual_GDIR);
	register_data |= (0x01 << 4);
	iowrite32(register_data, led_red.virtual_GDIR); //设置GPIO1_04 为输出模式

	register_data = ioread32(led_red.virtual_DR);
	register_data |= (0x01 << 4);
	iowrite32(register_data, led_red.virtual_DR); //设置 GPIO1_04 默认输出高电平






	/*获取rgb_led节点的绿灯子节点*/
	led_green.device_node = of_find_node_by_name(rgb_led_device_node,"rgb_led_green");
	if (led_green.device_node == NULL)
	{
		printk(KERN_ERR "\n get rgb_led_green_device_node failed ! \n");
		return -1;
	}

	/*获取 reg 属性并转化为虚拟地址*/
	led_green.virtual_CCM_CCGR = of_iomap(led_green.device_node, 0);
	led_green.virtual_IOMUXC_SW_MUX_CTL_PAD = of_iomap(led_green.device_node, 1);
	led_green.virtual_IOMUXC_SW_PAD_CTL_PAD = of_iomap(led_green.device_node, 2);
	led_green.virtual_DR = of_iomap(led_green.device_node, 3);
	led_green.virtual_GDIR = of_iomap(led_green.device_node, 4);

	/*初始化绿灯*/
	register_data = ioread32(led_green.virtual_CCM_CCGR);
	register_data |= (0x03 << 12);
	iowrite32(register_data, led_green.virtual_CCM_CCGR); //开启时钟

	register_data = ioread32(led_green.virtual_IOMUXC_SW_MUX_CTL_PAD);
	register_data &= ~(0xf << 0);
	register_data |= (0x05 << 0);
	iowrite32(register_data, led_green.virtual_IOMUXC_SW_MUX_CTL_PAD); //设置复用功能

	register_data = ioread32(led_green.virtual_IOMUXC_SW_PAD_CTL_PAD);
	register_data = (0x10B0);
	iowrite32(register_data, led_green.virtual_IOMUXC_SW_PAD_CTL_PAD); //设置PAD 属性

	register_data = ioread32(led_green.virtual_GDIR);
	register_data |= (0x01 << 20);
	iowrite32(register_data, led_green.virtual_GDIR); //设置GPIO4_IO20 为输出模式

	register_data = ioread32(led_green.virtual_DR);
	register_data |= (0x01 << 20);
	iowrite32(register_data, led_green.virtual_DR); //设置 GPIO4_IO20 默认输出高电平






	/*获取rgb_led节点的蓝灯子节点*/
	led_blue.device_node = of_find_node_by_name(rgb_led_device_node,"rgb_led_blue");
	if (led_blue.device_node == NULL)
	{
		printk(KERN_ERR "\n get rgb_led_blue_device_node failed ! \n");
		return -1;
	}

	/*获取 reg 属性并转化为虚拟地址*/
	led_blue.virtual_CCM_CCGR = of_iomap(led_blue.device_node, 0);
	led_blue.virtual_IOMUXC_SW_MUX_CTL_PAD = of_iomap(led_blue.device_node, 1);
	led_blue.virtual_IOMUXC_SW_PAD_CTL_PAD = of_iomap(led_blue.device_node, 2);
	led_blue.virtual_DR = of_iomap(led_blue.device_node, 3);
	led_blue.virtual_GDIR = of_iomap(led_blue.device_node, 4);

	/*初始化蓝灯*/
	register_data = ioread32(led_blue.virtual_CCM_CCGR);
	register_data |= (0x03 << 12);
	iowrite32(register_data, led_blue.virtual_CCM_CCGR); //开启时钟

	register_data = ioread32(led_blue.virtual_IOMUXC_SW_MUX_CTL_PAD);
	register_data &= ~(0xf << 0);
	register_data |= (0x05 << 0);
	iowrite32(register_data, led_blue.virtual_IOMUXC_SW_MUX_CTL_PAD); //设置复用功能

	register_data = ioread32(led_blue.virtual_IOMUXC_SW_PAD_CTL_PAD);
	register_data = (0x10B0);
	iowrite32(register_data, led_blue.virtual_IOMUXC_SW_PAD_CTL_PAD); //设置PAD 属性

	register_data = ioread32(led_blue.virtual_GDIR);
	register_data |= (0x01 << 19);
	iowrite32(register_data, led_blue.virtual_GDIR); //设置GPIO4_IO19 为输出模式

	register_data = ioread32(led_blue.virtual_DR);
	register_data |= (0x01 << 19);
	iowrite32(register_data, led_blue.virtual_DR); //设置 GPIO4_IO19 默认输出高电平








	/*---------------------注册 字符设备部分-----------------*/

	//第一步
	//采用动态分配的方式,获取设备编号,次设备号为0,
	//设备名称为rgb-leds,可通过命令cat  /proc/devices查看
	//DEV_CNT为1,当前只申请一个设备编号
	ret = alloc_chrdev_region(&led_devno, 0, DEV_CNT, DEV_NAME);
	if (ret < 0)
	{
		printk("fail to alloc led_devno\n");
		goto alloc_err;
	}
	//第二步
	//关联字符设备结构体cdev与文件操作结构体file_operations
	led_chr_dev.owner = THIS_MODULE;
	cdev_init(&led_chr_dev, &led_chr_dev_fops);
	//第三步
	//添加设备至cdev_map散列表中
	ret = cdev_add(&led_chr_dev, led_devno, DEV_CNT);
	if (ret < 0)
	{
		printk("fail to add cdev\n");
		goto add_err;
	}

	//第四步
	/*创建类 */
	class_led = class_create(THIS_MODULE, DEV_NAME);

	/*创建设备*/
	device = device_create(class_led, NULL, led_devno, NULL, DEV_NAME);

	return 0;

add_err:
	//添加设备失败时,需要注销设备号
	unregister_chrdev_region(led_devno, DEV_CNT);
	printk("\n error! \n");
alloc_err:

	return -1;
}

static const struct of_device_id rgb_led[] = {
	{.compatible = "fire,rgb_led"},
	{/* sentinel */}};

/*定义平台设备结构体*/
struct platform_driver led_platform_driver = {
	.probe = led_probe,
	.driver = {
		.name = "rgb-leds-platform",
		.owner = THIS_MODULE,
		.of_match_table = rgb_led,
	}};

/*
*驱动初始化函数
*/
static int __init led_platform_driver_init(void)
{
	int DriverState;
	DriverState = platform_driver_register(&led_platform_driver);
	printk(KERN_ALERT "\tDriverState is %d\n", DriverState);
	return 0;
}

/*
*驱动注销函数
*/
static void __exit led_platform_driver_exit(void)
{
	/*取消物理地址映射到虚拟地址*/
	iounmap(led_green.virtual_CCM_CCGR);
	iounmap(led_green.virtual_IOMUXC_SW_MUX_CTL_PAD);
	iounmap(led_green.virtual_IOMUXC_SW_PAD_CTL_PAD);
	iounmap(led_green.virtual_DR);
	iounmap(led_green.virtual_GDIR);

	iounmap(led_red.virtual_CCM_CCGR);
	iounmap(led_red.virtual_IOMUXC_SW_MUX_CTL_PAD);
	iounmap(led_red.virtual_IOMUXC_SW_PAD_CTL_PAD);
	iounmap(led_red.virtual_DR);
	iounmap(led_red.virtual_GDIR);

	iounmap(led_blue.virtual_CCM_CCGR);
	iounmap(led_blue.virtual_IOMUXC_SW_MUX_CTL_PAD);
	iounmap(led_blue.virtual_IOMUXC_SW_PAD_CTL_PAD);
	iounmap(led_blue.virtual_DR);
	iounmap(led_blue.virtual_GDIR);

	/*删除设备*/
	device_destroy(class_led, led_devno);		  //清除设备
	class_destroy(class_led);					  //清除类
	cdev_del(&led_chr_dev);						  //清除设备号
	unregister_chrdev_region(led_devno, DEV_CNT); //取消注册字符设备

	/*注销字符设备*/
	platform_driver_unregister(&led_platform_driver);

	printk(KERN_ALERT "led_platform_driver exit!\n");
}

module_init(led_platform_driver_init);
module_exit(led_platform_driver_exit);

MODULE_LICENSE("GPL");

/**/

总结

将led.dts编译为rgb.dtbo插件设备树,将传统设备树和插件设备树都加载到内核中,加载完成后就使用以下命令查看设备树,此时可以在设备数中看到新增了rgb_led节点。

ls /sys/firmware/devicetree/base
或者
ls /proc/device-tree

再编译dts_led.c源文件为dto.led.ko内核模块并加载进内核。这时就有了/dev/rgb_led节点,最后向/dev/rgb_led节点写入数据就能控制rgb灯了。

sudo sh -c "ecoh '1' >/dev/rgb_led"
亮蓝灯
sudo sh -c "ecoh '2' >/dev/rgb_led"
亮绿灯
sudo sh -c "ecoh '4' >/dev/rgb_led"
亮红灯
sudo sh -c "ecoh '7' >/dev/rgb_led"
全亮
;