Bootstrap

YOLO 划分数据集(训练集、验证集、测试集)

前言

本博客是在我的另一篇博客 VOC 格式与 YOLO 格式的相互转换 的基础上进行的,有需要可以参考

以下代码亲测可以直接复制运行(以下所有的路径修改成自己对应的路径) {\color{Red} \mathbf{以下代码亲测可以直接复制运行 (以下所有的路径修改成自己对应的路径)}} 以下代码亲测可以直接复制运行(以下所有的路径修改成自己对应的路径)

训练集、验证集(8:2)

split82.py 内容如下:

import os
import shutil
import random
from tqdm import tqdm

"""
标注文件是yolo格式(txt文件)
训练集:验证集 (8:2) 
"""


def split_img(img_path, label_path, split_list):
    try:  # 创建数据集文件夹
        Data = './VOCdevkit/VOC2007/ImageSets'
        # 这里我的文件夹./VOCdevkit/VOC2007/ImageSets提前创建好了,所以注释了下一行,否则会抛异常
        # os.mkdir(Data)

        train_img_dir = Data + '/images/train'
        val_img_dir = Data + '/images/val'
        # test_img_dir = Data + '/images/test'

        train_label_dir = Data + '/labels/train'
        val_label_dir = Data + '/labels/val'
        # test_label_dir = Data + '/labels/test'

        # 创建文件夹
        os.makedirs(train_img_dir)
        os.makedirs(train_label_dir)
        os.makedirs(val_img_dir)
        os.makedirs(val_label_dir)
        # os.makedirs(test_img_dir)
        # os.makedirs(test_label_dir)

    except:
        print('文件目录已存在')

    train, val = split_list
    all_img = os.listdir(img_path)
    all_img_path = [os.path.join(img_path, img) for img in all_img]
    # all_label = os.listdir(label_path)
    # all_label_path = [os.path.join(label_path, label) for label in all_label]
    train_img = random.sample(all_img_path, int(train * len(all_img_path)))
    train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]
    train_label = [toLabelPath(img, label_path) for img in train_img]
    train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]
    for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
        _copy(train_img[i], train_img_dir)
        _copy(train_label[i], train_label_dir)
        all_img_path.remove(train_img[i])
    val_img = all_img_path
    val_label = [toLabelPath(img, label_path) for img in val_img]
    for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
        _copy(val_img[i], val_img_dir)
        _copy(val_label[i], val_label_dir)


def _copy(from_path, to_path):
    shutil.copy(from_path, to_path)


def toLabelPath(img_path, label_path):
    img = img_path.split('\\')[-1]
    label = img.split('.jpg')[0] + '.txt'
    return os.path.join(label_path, label)


if __name__ == '__main__':
    img_path = './VOCdevkit/VOC2007/JPEGImages'
    label_path = './YoloLabels'
    split_list = [0.8, 0.2]  # 数据集划分比例[train:val]
    split_img(img_path, label_path, split_list)

训练集、验证集、测试集(7:2:1)

split721.py内容如下:

import os, shutil, random
from tqdm import tqdm

"""
标注文件是yolo格式(txt文件)
训练集:验证集:测试集 (7:2:1) 
"""


def split_img(img_path, label_path, split_list):
    try:
        Data = './VOCdevkit/VOC2007/ImageSets'
        # Data是你要将要创建的文件夹路径(路径一定是相对于你当前的这个脚本而言的)
        # os.mkdir(Data)

        train_img_dir = Data + '/images/train'
        val_img_dir = Data + '/images/val'
        test_img_dir = Data + '/images/test'

        train_label_dir = Data + '/labels/train'
        val_label_dir = Data + '/labels/val'
        test_label_dir = Data + '/labels/test'

        # 创建文件夹
        os.makedirs(train_img_dir)
        os.makedirs(train_label_dir)
        os.makedirs(val_img_dir)
        os.makedirs(val_label_dir)
        os.makedirs(test_img_dir)
        os.makedirs(test_label_dir)

    except:
        print('文件目录已存在')

    train, val, test = split_list
    all_img = os.listdir(img_path)
    all_img_path = [os.path.join(img_path, img) for img in all_img]
    # all_label = os.listdir(label_path)
    # all_label_path = [os.path.join(label_path, label) for label in all_label]
    train_img = random.sample(all_img_path, int(train * len(all_img_path)))
    train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]
    train_label = [toLabelPath(img, label_path) for img in train_img]
    train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]
    for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
        _copy(train_img[i], train_img_dir)
        _copy(train_label[i], train_label_dir)
        all_img_path.remove(train_img[i])
    val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))
    val_label = [toLabelPath(img, label_path) for img in val_img]
    for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
        _copy(val_img[i], val_img_dir)
        _copy(val_label[i], val_label_dir)
        all_img_path.remove(val_img[i])
    test_img = all_img_path
    test_label = [toLabelPath(img, label_path) for img in test_img]
    for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):
        _copy(test_img[i], test_img_dir)
        _copy(test_label[i], test_label_dir)


def _copy(from_path, to_path):
    shutil.copy(from_path, to_path)


def toLabelPath(img_path, label_path):
    img = img_path.split('\\')[-1]
    label = img.split('.jpg')[0] + '.txt'
    return os.path.join(label_path, label)


if __name__ == '__main__':
    img_path = './VOCdevkit/VOC2007/JPEGImages'  # 你的图片存放的路径(路径一定是相对于你当前的这个脚本文件而言的)
    label_path = './YoloLabels'  # 你的txt文件存放的路径(路径一定是相对于你当前的这个脚本文件而言的)
    split_list = [0.7, 0.2, 0.1]  # 数据集划分比例[train:val:test]
    split_img(img_path, label_path, split_list)

在这里插入图片描述

完成我的另一篇博客 VOC 格式与 YOLO 格式的相互转换以及本文YOLO 划分数据集(训练集、验证集、测试集)之后,我的整个项目结构如下图所示:

在这里插入图片描述

;