1. 绘图目的、数据类型及数据来源
绘图目的:有时,需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较。但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现。在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制。
数据类型:基于时间和截面两个维度,可把数据分为截面数据、时间序列及面板数据。在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据。因此,按照先难后易的原则,先对某一年各省的GDP进行地理可视化,再进一步构建for循环对多年各省的GDP进行可视化,形成最终的时间轮播图。
数据来源:本文案例使用的GDP数据来源于国家统计局官网,可在线下载到本地,保存为csv或excel格式,用pandas中的DataFrame进行读取。
2. 全国各省单年GDP的可视化
在pyecharts中可使用Map类型实现地理可视化,其原理是通过不同颜色填充以展现不同的数据,options实现图表的调整及修饰。代码展示如下:
import pandas as pd
from pyecharts.charts import Map
import pyecharts.options as opts
frame = pd.read_csv('C:\\Users\\dell\\Desktop\\分省年度数据2.csv',encoding='GBK')
map = Map()
map.add("我国地区的GDP",frame[['地区','2019年']].values.tolist(),"china")
map.set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=500,max_=12000))
map.render("2019年全国各地区GDP.html")
**解析:**addÿ