Bootstrap

OpenCV3车牌识别(C++版)

车牌识别(基于OpenCV3.4.7+VS2017)

 

视频识别

 

蓝色车牌识别

 
  视觉入坑的第一个Demo(注释很详细),因为本人之前拖延,一直没能写详细实现博客,先将代码贴出来供大家交流,个人认为精华部分在字符切割(直接用指针遍历像素加限制条件切割),车牌模板已上传,整个工程也已上传,后续完善各环节实现步骤详解。
 

头文件:Global.h

#ifdef GLOBAL



extern int flag_1;
extern bool flag;
extern bool specialFlag;
extern int captureRead
extern string carPlate;
extern char test[10];


extern struct stu1
{
   
	char number;
	Mat image;
	double matchDegree;
};
extern struct  stu
{
   
	Mat image;
	double matchDegree;
};

#endif

 

唯一的.cpp文件:PlateIdentify.cpp(说实话,这Demo挺 “C” 的)

 

#include <opencv2/opencv.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
#include"Global.h"
#include <windows.h>
#include <string>

using namespace std;
using namespace cv;

void fillHole(const Mat srcBw, Mat &dstBw);           //填补算法
Mat cutOne(Mat cutImage);         //边框切割算法
void CharCut(Mat srcImage);            //单个字符切割算法
Mat Location(Mat srcImage);            //图像识别算法
void SingleCharCut(Mat doubleImage, int k1, int k2);
void ShowChar();
void MatchProvince();
void MatchNumber();
void readProvince();
void readNumber();
void VideoShow(Mat videoImage);
void GetStringSize(HDC hDC, const char* str, int* w, int* h);
void putTextZH(Mat &dst, const char* str, Point org, Scalar color, int fontSize, const char* fn, bool italic, bool underline);




int flag_1;          //判断是否倾斜,需不需要二次定位车牌
bool flag;       //判断提取是否成功
bool specialFlag = false;    //针对嵌套车牌
int captureRead = 0;
int videoFlag = 0;
string carPlateProvince = " ";
string carPlate = " ";
char test[10];
vector<Mat>  singleChar;         //字符图片容器

int main(int argc, char *argv[])
{
   
	//计时开始
	double time0 = static_cast<double>(getTickCount());

	//视频操作
	VideoCapture capture("1.mp4");
	Mat srcImage;
	Mat theFirst;
	int singleCharLength;

	//读取字符图片
	readProvince();
	readNumber();

	while (1) {
   
		capture >> srcImage;
		try {
   

			if (!srcImage.data) {
    printf("视频识别结束    \n"); return 0; }

			if (srcImage.rows >= srcImage.cols)
			{
   
				resize(srcImage, srcImage, Size(640, 640 * srcImage.rows / srcImage.cols));
			}
			else
			{
   
				resize(srcImage, srcImage, Size(400 * srcImage.cols / srcImage.rows, 400));
			}

			//车牌定位

			theFirst = Location(srcImage);

			if (flag)
			{
   
				if (flag_1 == 1)                      //旋转后要再次定位去上下杂边
				{
   
					theFirst = Location(theFirst);
					flag_1 = 0;
				}
			}
			if (flag)
			{
   
				//车牌切割(切割上下边,去除干扰)
				theFirst = cutOne(theFirst);
				//单个字符切割
				CharCut(theFirst);
				singleCharLength = singleChar.size();
				printf("采取字符轮廓数                               %d\n", singleCharLength);
				ShowChar();
				if (singleCharLength >= 7)
				{
   

					MatchProvince();
					MatchNumber();
				}

				singleChar.clear();
			}

		}
		catch (Exception e) {
   

			cout << "Standard ecxeption : " << e.what() << " \n" << endl;

		}

		if (waitKey(30) >= 0)
			break;
		//延时30ms

	}
		//imwrite("match\\xxxxxx.bmp", singleChar[2]);


	                
	time0 = ((double)getTickCount() - time0) / getTickFrequency();
	cout << "运行时间" << time0 << "秒" << endl;


	waitKey(0);
}

void fillHole(const Mat srcBw, Mat &dstBw)
{
   
	Size imageSize = srcBw.size();
	Mat Temp = Mat::zeros(imageSize.height + 2, imageSize.width + 2, srcBw.type());//延展图像
	srcBw.copyTo(Temp(Range(1, imageSize.height + 1), Range(1, imageSize.width + 1)));

	cv::floodFill(Temp, Point(0, 0), Scalar(255));

	Mat cutImg;//裁剪延展的图像
	Temp(Range(1, imageSize.height + 1), Range(1, imageSize.width + 1)).copyTo(cutImg);

	dstBw = srcBw | (~cutImg);
}

Mat Location(Mat srcImage)
{
   
	//判断变量重赋值
	flag = false;

	//用于旋转车牌
	int	imageWidth, imageHeight;            //输入图像的长和宽
	imageWidth = srcImage.rows;                 //获取图片的宽
	imageHeight = srcImage.cols;                 //获取图像的长
	//!!!!!!!!!!!!!!!!!!!
	Mat blueROI = srcImage.clone();
	cvtColor(blueROI, blueROI, CV_BGR2HSV);
	//namedWindow("hsv图");
	//imshow("hsv图", blueROI);
	//中值滤波操作
	medianBlur(blueROI, blueROI, 3);
	//namedWindow("medianBlur图");
	//imshow("medianBlur图", blueROI);
	//将蓝色区域二值化
	inRange(blueROI, Scalar(100, 130, 50), Scalar(124, 255, 255), blueROI);
	//namedWindow("blue图");
	//imshow("blue图", blueROI);

	Mat element1 = getStructuringElement(MORPH_RECT, Size(2, 2));     //size()对速度有影响
	morphologyEx(blueROI, blueROI, MORPH_OPEN, element1);
	//namedWindow("0次K运算后图像");
	//imshow("0次K运算后图像", blueROI);

	Mat element0 = getStructuringElement(MORPH_ELLIPSE, Size(10, 10));     //size()对速度有影响
	morphologyEx(blueROI, blueROI, MORPH_CLOSE, element0);
	//namedWindow("0次闭运算后图像");
	//imshow("0次闭运算后图像", blueROI);
	vector<vector<Point>> contours;

	findContours(blueROI, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);


	int cnt = contours.size();
	cout << "number of contours   " << cnt << endl;  //打印轮廓个数
	if (cnt == 0)
	{
   
		if (!flag)        //在视频中显示
		{
   
			cout << "图中无车牌       " << endl;
			//namedWindow("提取车牌结果图");
			//imshow("提取车牌结果图", srcImage);    //显示最终结果图
			VideoShow(srcImage);
			return  srcImage;
		}
	}



	double area;
	double longside, temp, shortside, long2short;
	float  angle = 0;
	Rect rect;
	RotatedRect box;    //可旋转的矩形盒子
	Point2f vertex[4];        //四个顶点

	Mat image = srcImage.clone();        //为后来显示做准备
	Mat  rgbCutImg;                       //车牌裁剪图

	//box.points(vertex);            //获取矩形四个顶点坐标
	//length=arcLength(contour[i]);                        //获取轮廓周长
	//area=contourArea(contour[i]);                        //获取轮廓面积
	//angle=box.angle;           //得到车牌倾斜角度

	for (int i = 0; i < cnt; i++)
	{
   
		area = contourArea(contours[i]);              //获取轮廓面积
		if (area > 600 && area < 15000)     //矩形区域面积大小判断
		{
   
			rect = boundingRect(contours[i]);    //计算矩形边界
			box = minAreaRect(contours[i]);      //获取轮廓的矩形
			box.points(vertex);                  //获取矩形四个顶点坐标
			angle = box.angle;                   //得到车牌倾斜角度

			longside = sqrt(pow(vertex[1].x - vertex[0].x, 2) + pow(vertex[1].y - vertex[0].y, 2));
			shortside = sqrt(pow(vertex[2].x - vertex[1].x, 2) + pow(vertex[2].y - vertex[1].y, 2));
			if (shortside > longside)   //短轴大于长轴,交换数据
			{
   
				temp = longside;
				longside = shortside;
				shortside = temp;
				cout << "交换" << endl;
			}
			else
				angle += 90;
			long2short = longside / shortside;
			if (long2short > 1.5 && long2short < 4.5)
			{
   
				flag = true;
				for (int i = 0; i < 4; ++i)       //划线框出车牌区域
					line(image, vertex[i], vertex[((i + 1) % 4) ? (i + 1) : 0], Scalar(0, 255, 0), 1, CV_AA);


				if (!flag_1)        //在视频中显示
				{
   
					printf("提取成功\n");
					/*namedWindow("提取车牌结果图");
					imshow("提取车牌结果图", image);  */  //显示最终结果图
					VideoShow(image);
				}

				rgbCutImg = srcImage(rect);
				//namedWindow("车牌图");
				//imshow("车牌图", rgbCutImg);//裁剪出车牌	
				break;              //退出循环,以免容器中变量变换
			}
		}
	}
	cout << "倾斜角度:" << angle << endl;
	if (flag  &&  fabs(angle) > 0.8)        //车牌过偏,转一下                偏移角度小时可不调用,后续找到合适范围再改进
	{
   
		flag_1 = 1;
		Mat RotractImg(imageWidth, imageHeight, CV_8UC1, Scalar(0, 0, 0));       //倾斜矫正图片
		Point2f center = box.center;           //获取车牌中心坐标
		Mat M2 = getRotationMatrix2D(center, angle, 1);       //计算旋转加缩放的变换矩阵 
		warpAffine(srcImage, RotractImg, M2, srcImage.size(), 1, 0, Scalar(0));       //进行倾斜矫正
		//namedWindow("倾斜矫正后图片",0);
		//imshow("倾斜矫正后图片", RotractImg);
		rgbCutImg = RotractImg(rect);      //截取车牌彩色照片
		//namedWindow("矫正后车牌照");
		//imshow("矫正后车牌照", rgbCutImg);
			/*cout << "矩形中心:" << box.center.x << "," << box.center.y << endl;*/
		return  rgbCutImg;
	}

	if (flag == false) {
   
		printf("提取失败\n");                      //后期加边缘检测法识别
		if (!flag_1)        //在视频中显示
		{
   
			/*namedWindow("提取车牌结果图");
			imshow("提取车牌结果图", image); */   //显示最终结果图
			VideoShow(image);
		}
	}
	return rgbCutImg;
}

Mat cutOne(Mat cutImage)
{
   
	//打印车牌长宽
	try {
   
		/*cout << "           cutImage.rows  :   " << cutImage.rows << endl;
		cout << "           cutImage.cols  :   " << cutImage.cols << endl;*/
		if(cutImage.rows >= cutImage.cols
;