Bootstrap

Android 7.0 Camera架构源码分析1 - CameraService启动

本系列教程主要讲解Camera从APP层到HAL层的整个流程,第一篇先讲解CameraService的启动,后面会讲解open、preview、takepicture的流程。

Android 7.0之前CameraService是在mediaserver进程中注册的,看下Android 6.0的代码:

    //path: frameworks\av\media\mediaserver\main_mediaserver.cpp
    int main()
    {
        sp<ProcessState> proc(ProcessState::self());
        sp<IServiceManager> sm = defaultServiceManager();
        ALOGI("ServiceManager: %p", sm.get());
        AudioFlinger::instantiate();
        MediaPlayerService::instantiate();
        ResourceManagerService::instantiate();
        //初始化相机服务
        CameraService::instantiate();
        AudioPolicyService::instantiate();
        SoundTriggerHwService::instantiate();
        RadioService::instantiate();
        registerExtensions();
        ProcessState::self()->startThreadPool();
        IPCThreadState::self()->joinThreadPool();
    }

接着看下Android 7.0中main_mediaserver.cpp的代码,发现没有了CameraService::instantiate(); 也就是说Android 7.0之后就不在main_mediaserver.cpp中注册了。

//没有CameraService::instantiate(),也少了几个别的服务,这里只关注CameraService
int main(int argc __unused, char **argv __unused)
{
    signal(SIGPIPE, SIG_IGN);

    sp<ProcessState> proc(ProcessState::self());
    sp<IServiceManager> sm(defaultServiceManager());
    ALOGI("ServiceManager: %p", sm.get());
    InitializeIcuOrDie();
    MediaPlayerService::instantiate();
    ResourceManagerService::instantiate();
    registerExtensions();
    ProcessState::self()->startThreadPool();
    IPCThreadState::self()->joinThreadPool();
}

我们看下FrameWork层Camera的代码(frameworks\av\camera ),发现多了个cameraserver文件夹 ,看下里面的main_cameraserver.cpp,原来CameraServe::instantiaicte()在这里。

int main(int argc __unused, char** argv __unused)
{
    signal(SIGPIPE, SIG_IGN);

    sp<ProcessState> proc(ProcessState::self());
    sp<IServiceManager> sm = defaultServiceManager();
    ALOGI("ServiceManager: %p", sm.get());
    //初始化CameraService服务
    CameraServe::instantiaicte();
    ProcessState::self()->startThreadPool();
    IPCThreadState::self()->joinThreadPool();
}

从这里可以猜测cameraserver应该是作为独立的进程运行的,我们看下 cameraserver文件夹下面的另一个文件cameraserver.rc

//这表示由init进程启动名字为cameraserver的进程,果然是独立进程,路径为/system/bin/cameraserver
service cameraserver /system/bin/cameraserver
    //class表示类别,同一类别(这里是main类别)的进程同时启动,同时停止
    class main
    //用户名及分组
    user cameraserver
    group audio camera input drmrpc
    ioprio rt 4
    writepid /dev/cpuset/camera-daemon/tasks /dev/stune/top-app/tasks

cameraserver.rc由Android.mk文件来打包到指定位置:

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

//源文件
LOCAL_SRC_FILES:= \
    main_cameraserver.cpp

LOCAL_SHARED_LIBRARIES := \
    libcameraservice \
    libcutils \
    libutils \
    libbinder \
    libcamera_client

//模块的名称
LOCAL_MODULE:= cameraserver
LOCAL_32_BIT_ONLY := true

LOCAL_CFLAGS += -Wall -Wextra -Werror -Wno-unused-parameter

//LOCAL_INIT_RC会将cameraserver.rc放在/system/etc/init/目录中,这个目录下的脚本会由init进程来启动。
LOCAL_INIT_RC := cameraserver.rc

include $(BUILD_EXECUTABLE)

那cameraserver.rc文件什么时候执行呢?这里我们需要理解下Android系统启动过程,Android系统启动包括两大块:Linux内核启动,Android框架启动。

1,Linux内核启动:

  • BootLoader启动

内核启动首先装载BootLoader引导程序,执行完进入kthreadd内核进程,这是所有内核进程的父进程。

  • 加载Linux内核

初始化驱动、安装根文件系统等,最后启动第一个用户进程init进程,它是所有用户进程的父进程。这样就进入了Android框架的启动阶段。

2,Android框架启动

init进程启动后会加载init.rc(system\core\rootdir\init.rc)脚本,当它执行mount_all指令挂载分区时,会加载/{system,vendor,odm}/etc/init目录下的所有rc脚本,这样就会启动cameraserver进程,同时也会启动zygote进程(第一个Java层进程,也是Java层所有进程的父进程)、ServiceManager、mediaserver(多媒体服务进程)、surfaceflinger(屏幕渲染相关的进程)等。之后zygote会孵化出启动system_server进程,Android framework里面的所有service(ActivityManagerService、WindowManagerService等)都是由system_server启动,这里就不细讲了。

那为什么Android 7.0之前cameraservice是运行在mediaserver进程中的,而从Android 7.0开始将cameraservice分离出来成一个单独的cameraserver进程?这是为了安全性,因为mediaserver 进程中有很多其它的Service,如AudioFlinger、MediaPlayerService等,如果这其中有一个Service挂掉就会导致mediaserver进程重启,如果相机正在执行,这样就会挂掉,用户体验很差。

现在知道了cameraserver进程是怎么启动的了,下面分析下它的启动过程,cameraserver进程的入口是frameworks\av\camera\cameraserver\main_cameraserver.cpp的main函数,看下代码:

int main(int argc __unused, char** argv __unused)
{
    signal(SIGPIPE, SIG_IGN);
    //获取一个ProcessState跟Binder驱动打交道
    sp<ProcessState> proc(ProcessState::self());
    //获取ServiceManager用以注册该服务
    sp<IServiceManager> sm = defaultServiceManager();
    ALOGI("ServiceManager: %p", sm.get());
    CameraService::instantiate();
    //线程池管理
    ProcessState::self()->startThreadPool();
    IPCThreadState::self()->joinThreadPool();
}

我们主要关注CameraService::instantiate(),别的几行属于Binder机制,我这里假设你已经熟悉了,不熟悉的话先补下Binder知识,不然后面很难理解的。

CameraService继承了BinderService和BnCameraService类。CameraService::instantiate()函数是调用其父类BinderService类的方法。

class CameraService :
    public BinderService<CameraService>,
    public ::android::hardware::BnCameraService,
    public IBinder::DeathRecipient,
    public camera_module_callbacks_t
{
......
}

//模板类
template<typename SERVICE>
class BinderService
{
public:
    static status_t publish(bool allowIsolated = false) {
        sp<IServiceManager> sm(defaultServiceManager());
        return sm->addService(
                String16(SERVICE::getServiceName()),
                new SERVICE(), allowIsolated);
    }

    static void publishAndJoinThreadPool(bool allowIsolated = false) {
        publish(allowIsolated);
        joinThreadPool();
    }

    static void instantiate() { publish(); }
......
}

BinderService使用了模板类,使用CameraService::instantiate()初始化时,SERVICE就是CameraService。替换模板后CameraService::instantiate()函数如下:

static void instantiate() { publish(); }

static status_t publish() {
    sp<IServiceManager> sm(defaultServiceManager());
    /getServiceName()返回"media.camera"字符串
    return sm->addService(
         String16(CameraService ::getServiceName()), new CameraService (), false);
}

我们知道defaultServiceManager返回的是BpServiceManager,看下它的addService函数:

    virtual status_t addService(const String16& name, const sp<IBinder>& service,
            bool allowIsolated)
    {
        Parcel data, reply;
        //写入Interface name,这里是"android.os.IServiceManager"
        data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
        //写入Service name
        data.writeString16(name);
        //写入Service实例
        data.writeStrongBinder(service);
        data.writeInt32(allowIsolated ? 1 : 0);
        //remote()实际上是指BpBinder(0)
        status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
        return err == NO_ERROR ? reply.readExceptionCode() : err;
    }

注意addService第二个参数service是sp类型,而sp初始化时,会调用其包装的对象的onFirstRef()函数,不懂的可以参考Android系统的智能指针(轻量级指针、强指针和弱指针)的实现原理分析

这里的service就是CameraService,看下它的onFirstRef()函数:

//原始代码有点长,这里只保留了比较重要的代码
void CameraService::onFirstRef()
{
    BnCameraService::onFirstRef();

    //camera_module_t和CAMERA_HARDWARE_MODULE_ID定义在hardware\libhardware\include\hardware\camera_common.h中,
    camera_module_t *rawModule;
    //注意这里把rawModule强转成camera_module_t,至于为什么能强转,下面会讲的
    int err = hw_get_module(CAMERA_HARDWARE_MODULE_ID,
            (const hw_module_t **)&rawModule);

    //创建CameraModule对象并初始化
    mModule = new CameraModule(rawModule);
    err = mModule->init();

    //获取摄像头数量
    mNumberOfCameras = mModule->getNumberOfCameras();
    mNumberOfNormalCameras = mNumberOfCameras;

    int latestStrangeCameraId = INT_MAX;
    for (int i = 0; i < mNumberOfCameras; i++) {
        String8 cameraId = String8::format("%d", i);
        //获取每个camera的信息以及初始化状态
    }

    //因为CameraService继承了camera_module_callbacks_t,定义在camera_common.h中,所以这里的Callback主要监听camera_device_status_change和torch_mode_status_change
    if (mModule->getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_1) {
        mModule->setCallbacks(this);
    }
    //连接CameraServiceProxy服务,也就是"media.camera.proxy"服务,此服务由SystemServer注册到ServiceManager中
    CameraService::pingCameraServiceProxy();
}

camera_module_t(hardware\libhardware\include\hardware\camera_common.h)的声明如下:

typedef struct camera_module {
    //注意common必须是camera_module的第一个成员,这样就可以根据camera_module_t的地址强转成hw_module_t
    hw_module_t common;
    int (*get_number_of_cameras)(void);
    ......
} camera_module_t;

hw_get_module()函数定义在hardware\libhardware\hardware.c文件中

int hw_get_module(const char *id, const struct hw_module_t **module)
{
    return hw_get_module_by_class(id, NULL, module);
}

int hw_get_module_by_class(const char *class_id, const char *inst,
                           const struct hw_module_t **module)
{
    ......
    //首先根据ro.hardware.class_id.inst查找动态链接库路径,如果可以找到,直接跳到found位置
    snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
    if (property_get(prop_name, prop, NULL) > 0) {
        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
            goto found;
        }
    }

    //在所有的配置变量中查找所需模块的动态链接库路径
    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {
        if (property_get(variant_keys[i], prop, NULL) == 0) {
            continue;
        }
        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
            goto found;
        }
    }

    return -ENOENT;

found:
    //根据路径加载动态链接库,并将硬件模块的结构体地址赋给module
    return load(class_id, path, module);
}
static int load(const char *id,
        const char *path,
        const struct hw_module_t **pHmi)
{
    int status = -EINVAL;
    void *handle = NULL;
    struct hw_module_t *hmi = NULL;

    //打开.so文件
    handle = dlopen(path, RTLD_NOW);

    //获取hal_module_info结构体的地址
    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
    hmi = (struct hw_module_t *)dlsym(handle, sym);

}

//hardware.h
/**
 * Name of the hal_module_info
 */
#define HAL_MODULE_INFO_SYM         HMI

/**
 * Name of the hal_module_info as a string
 */
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"

根据上述代码,dlsym就是找HMI的地址,而HMI就是HAL_MODULE_INFO_SYM的宏定义,所以最终就是找HAL_MODULE_INFO_SYM的地址。

通过查找Android 7.0 代码,发现HAL_MODULE_INFO_SYM是在hardware/qcom/camera/QCamera2/QCamera2Hal.cpp文件中实现的(如果你的7.0源码没有HAL层的代码,可以参考在线源代码http://androidxref.com/)。

static hw_module_t camera_common = {
    .tag                    = HARDWARE_MODULE_TAG,
    .module_api_version     = CAMERA_MODULE_API_VERSION_2_4,
    .hal_api_version        = HARDWARE_HAL_API_VERSION,
    .id                     = CAMERA_HARDWARE_MODULE_ID,
    .name                   = "QCamera Module",
    .author                 = "Qualcomm Innovation Center Inc",
    .methods                = &qcamera::QCamera2Factory::mModuleMethods,
    .dso                    = NULL,
    .reserved               = {0}
};

camera_module_t HAL_MODULE_INFO_SYM = {
    .common                 = camera_common,
    .get_number_of_cameras  = qcamera::QCamera2Factory::get_number_of_cameras,
    .get_camera_info        = qcamera::QCamera2Factory::get_camera_info,
    .set_callbacks          = qcamera::QCamera2Factory::set_callbacks,
    .get_vendor_tag_ops     = qcamera::QCamera3VendorTags::get_vendor_tag_ops,
    .open_legacy            = qcamera::QCamera2Factory::open_legacy,
    .set_torch_mode         = qcamera::QCamera2Factory::set_torch_mode,
    .init                   = NULL,
    .reserved               = {0}
};

所以最终rawModule就是指向HAL_MODULE_INFO_SYM,这样CameraService就跟Camera HAL层联系起来了。

回到CameraService::onFirstRef()函数中:

    //创建CameraModule对象并初始化
    mModule = new CameraModule(rawModule);
    err = mModule->init();

    //获取摄像头数量
    mNumberOfCameras = mModule->getNumberOfCameras();
    mNumberOfNormalCameras = mNumberOfCameras;
CameraModule::CameraModule(camera_module_t *module) {
    //对mModule进行初始化
    mModule = module;
}

int CameraModule::init() {
    //mModule->init就是指向HAL_MODULE_INFO_SYM的init,为NULL
    if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_4 &&
            mModule->init != NULL) {
        ATRACE_BEGIN("camera_module->init");
        res = mModule->init();
        ATRACE_END();
    }
    //调用getNumberOfCameras()
    mCameraInfoMap.setCapacity(getNumberOfCameras());
}

int CameraModule::getNumberOfCameras() {
    int numCameras;
    //调用HAL_MODULE_INFO_SYM的get_number_of_cameras()函数
    numCameras = mModule->get_number_of_cameras();
    return numCameras;
}

//查看HAL层代码

int QCamera2Factory::get_number_of_cameras()
{
    int numCameras = 0;
    //gQCamera2Factory为空的话,创建一个对象
    if (!gQCamera2Factory) {
        gQCamera2Factory = new QCamera2Factory();
        if (!gQCamera2Factory) {
            LOGE("Failed to allocate Camera2Factory object");
            return 0;
        }
    }

    if(gQCameraMuxer)
        numCameras = gQCameraMuxer->get_number_of_cameras();
    else
        //获取Camera摄像头数量
        numCameras = gQCamera2Factory->getNumberOfCameras();
    return numCameras;
}

QCamera2Factory::QCamera2Factory()
{
    mHalDescriptors = NULL;
    mCallbacks = NULL;
    //get_num_of_cameras()在mm_camera_interface.c中,之后就会进入到Linux内核,往下就不讲了
    mNumOfCameras = get_num_of_cameras();
    mNumOfCameras_expose = get_num_of_cameras_to_expose();
    ......
}

onFirstRef函数主要是根据ID查找并加载HAL模块的动态链接库,然后创建CameraModule对象并初始化以及获取摄像头数量,之后给HAL层设置一个监听接口。

回到addService函数中,接着看其里面的具体内容:

    virtual status_t addService(const String16& name, const sp<IBinder>& service,
            bool allowIsolated)
    {
        Parcel data, reply;
        //写入Interface name,这里是"android.os.IServiceManager"
        data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
        //写入Service name
        data.writeString16(name);
        //写入Service实例
        data.writeStrongBinder(service);
        data.writeInt32(allowIsolated ? 1 : 0);
        //remote()实际上是指BpBinder(0),它是指Binder驱动中的0号引用,也就是指ServiceManager的代理对象
        status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
        return err == NO_ERROR ? reply.readExceptionCode() : err;
    }

status_t BpBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    // Once a binder has died, it will never come back to life.
    if (mAlive) {
        //通过IPCThreadState对象来向Binder驱动发送添加服务的请求,注意mHandle值为0
        status_t status = IPCThreadState::self()->transact(
            mHandle, code, data, reply, flags);
        if (status == DEAD_OBJECT) mAlive = 0;
        return status;
    }
    return DEAD_OBJECT;
}

status_t IPCThreadState::transact(int32_t handle,
                                  uint32_t code, const Parcel& data,
                                  Parcel* reply, uint32_t flags)
{
    status_t err = data.errorCheck();
    if (err == NO_ERROR) {
        //将数据封装成binder_transaction_data结构,并写到mOut变量中
        err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
    }

    if ((flags & TF_ONE_WAY) == 0) {
        if (reply) {
            err = waitForResponse(reply);
        } else {
            Parcel fakeReply;
            err = waitForResponse(&fakeReply);
        }
    } 
    return err;
}

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
    binder_transaction_data tr;
    //封装数据
    tr.target.ptr = 0; /* Don't pass uninitialized stack data to a remote process */
    tr.target.handle = handle;
    tr.code = code;
    tr.flags = binderFlags;
    tr.cookie = 0;
    tr.sender_pid = 0;
    tr.sender_euid = 0;

    const status_t err = data.errorCheck();
    if (err == NO_ERROR) {
        tr.data_size = data.ipcDataSize();
        tr.data.ptr.buffer = data.ipcData();
        tr.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t);
        tr.data.ptr.offsets = data.ipcObjects();
    } 
    ......
    //写到mOut变量中
    mOut.writeInt32(cmd);
    mOut.write(&tr, sizeof(tr));

    return NO_ERROR;
}

到这里只是将数据封装了一下,但是还没发送,接着看waitForResponse函数:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
    uint32_t cmd;
    int32_t err;

    while (1) {
        //跟Binder驱动交互,这个是核心,在下面讲解
        if ((err=talkWithDriver()) < NO_ERROR) break;
        //读取Binder驱动返回的命令
        cmd = (uint32_t)mIn.readInt32();

        IF_LOG_COMMANDS() {
            alog << "Processing waitForResponse Command: "
                << getReturnString(cmd) << endl;
        }

        switch (cmd) {
        case BR_TRANSACTION_COMPLETE:
            if (!reply && !acquireResult) goto finish;
            break;

        case BR_DEAD_REPLY:
            err = DEAD_OBJECT;
            goto finish;

        case BR_FAILED_REPLY:
            err = FAILED_TRANSACTION;
            goto finish;

        case BR_ACQUIRE_RESULT:
            {
                ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
                const int32_t result = mIn.readInt32();
                if (!acquireResult) continue;
                *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
            }
            goto finish;

        case BR_REPLY:
            {
                binder_transaction_data tr;
                err = mIn.read(&tr, sizeof(tr));
                ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
                if (err != NO_ERROR) goto finish;

                if (reply) {
                    if ((tr.flags & TF_STATUS_CODE) == 0) {
                        reply->ipcSetDataReference(
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t),
                            freeBuffer, this);
                    } else {
                        err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
                        freeBuffer(NULL,
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t), this);
                    }
                } else {
                    freeBuffer(NULL,
                        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                        tr.data_size,
                        reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                        tr.offsets_size/sizeof(binder_size_t), this);
                    continue;
                }
            }
            goto finish;

        default:
            err = executeCommand(cmd);
            if (err != NO_ERROR) goto finish;
            break;
        }
    }

finish:
    if (err != NO_ERROR) {
        if (acquireResult) *acquireResult = err;
        if (reply) reply->setError(err);
        mLastError = err;
    }

    return err;
}

//不穿参数时doReceive为true
status_t IPCThreadState::talkWithDriver(bool doReceive)
{
    //mProcess是IPCThreadState初始化时所包含的ProcessState对象,它的mDriverFD对应Binder驱动的文件描述符
    if (mProcess->mDriverFD <= 0) {
        return -EBADF;
    }
    //将mOut的数据封装到binder_write_read结构体中
    binder_write_read bwr;

    // Is the read buffer empty?
    const bool needRead = mIn.dataPosition() >= mIn.dataSize();

    // We don't want to write anything if we are still reading
    // from data left in the input buffer and the caller
    // has requested to read the next data.
    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;

    bwr.write_size = outAvail;
    bwr.write_buffer = (uintptr_t)mOut.data();

    // This is what we'll read.
    if (doReceive && needRead) {
        bwr.read_size = mIn.dataCapacity();
        bwr.read_buffer = (uintptr_t)mIn.data();
    } else {
        bwr.read_size = 0;
        bwr.read_buffer = 0;
    }

    bwr.write_consumed = 0;
    bwr.read_consumed = 0;
    status_t err;
    do {
#if defined(__ANDROID__)
        //这里就是向Binder驱动写入命令和数据
        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
            err = NO_ERROR;
#else
        err = INVALID_OPERATION;
#endif
    } while (err == -EINTR);
    ......
    return err;
}

下面就进入到了Linux内核中了,AOSP中没有这部分代码,我们可以使用这两个Linux内核在线阅读网站:https://lxr.missinglinkelectronics.com/linux 或者 http://elixir.free-electrons.com/

//路径
linux/drivers/android/binder.c
linux/include/uapi/linux/android/binder.h

首先binder_init函数会创建 /dev/binder节点:

static int __init binder_init(void)
{
    ......
    while ((device_name = strsep(&device_names, ","))) {
        //初始化Binder设备
        ret = init_binder_device(device_name);
    }
    return ret;
}

static int __init init_binder_device(const char *name)
{
    int ret;
    struct binder_device *binder_device;

    binder_device = kzalloc(sizeof(*binder_device), GFP_KERNEL);
    if (!binder_device)
        return -ENOMEM;

    //操作函数结构体
    binder_device->miscdev.fops = &binder_fops;
    binder_device->miscdev.minor = MISC_DYNAMIC_MINOR;
    //设备名称,这里就是"binder",这样用户空间可以通过/dev/binder节点进行操作
    binder_device->miscdev.name = name;

    binder_device->context.binder_context_mgr_uid = INVALID_UID;
    binder_device->context.name = name;
    //向内核中注册misc设备
    ret = misc_register(&binder_device->miscdev);
    if (ret < 0) {
        kfree(binder_device);
        return ret;
    }

    hlist_add_head(&binder_device->hlist, &binder_devices);

    return ret;
}

//这里指定了文件操作的函数
static const struct file_operations binder_fops = {
    .owner = THIS_MODULE,
    .poll = binder_poll,
    //从Linux kernel 2.6.36版本开始,删除了ioctl函数指针,用unlocked_ioctl取代
    .unlocked_ioctl = binder_ioctl,
    .compat_ioctl = binder_ioctl,
    .mmap = binder_mmap,
    .open = binder_open,
    .flush = binder_flush,
    .release = binder_release,
};

回到IPCThreadState::talkWithDriver:

if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
    err = NO_ERROR;

//ioctl就对应内核中的binder_ioctl函数,
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
    int ret;
    struct binder_proc *proc = filp->private_data;
    struct binder_thread *thread;
    ......
    //从binder_proc中查找binder_thread,如果当前线程已经加入到proc的线程队列则直接返回,如果不存在则创建binder_thread,并将当前线程添加到当前的proc
    thread = binder_get_thread(proc);
    switch (cmd) {
    case BINDER_WRITE_READ:
        ret = binder_ioctl_write_read(filp, cmd, arg, thread);
        if (ret)
            goto err;
        break;
}

static int binder_ioctl_write_read(struct file *filp,
                unsigned int cmd, unsigned long arg,
                struct binder_thread *thread)
{
    int ret = 0;
    struct binder_proc *proc = filp->private_data;
    unsigned int size = _IOC_SIZE(cmd);
    void __user *ubuf = (void __user *)arg;
    struct binder_write_read bwr;

    if (size != sizeof(struct binder_write_read)) {
        ret = -EINVAL;
        goto out;
    }
    //把用户空间的binder_write_read数据拷贝到内核空间bwr
    if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
        ret = -EFAULT;
        goto out;
    }

    if (bwr.write_size > 0) {
        //当写缓存中有数据时,执行Binder写操作
        ret = binder_thread_write(proc, thread,
                      bwr.write_buffer,
                      bwr.write_size,
                      &bwr.write_consumed);
        trace_binder_write_done(ret);
        //如果Binder写操作失败,则将bwr数据拷回到内核空间,并返回
        if (ret < 0) {
            bwr.read_consumed = 0;
            if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                ret = -EFAULT;
            goto out;
        }
    }
    if (bwr.read_size > 0) {
        //当读缓存中有数据时,执行Binder读操作
        ret = binder_thread_read(proc, thread, bwr.read_buffer,
                     bwr.read_size,
                     &bwr.read_consumed,
                     filp->f_flags & O_NONBLOCK);
        trace_binder_read_done(ret);
        if (!list_empty(&proc->todo))
            wake_up_interruptible(&proc->wait);
        //如果Binder读操作失败,则将bwr数据拷回到内核空间,并返回
        if (ret < 0) {
            if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                ret = -EFAULT;
            goto out;
        }
    }

    //将bwr数据拷回到内核空间,并返回
    if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
        ret = -EFAULT;
        goto out;
    }
out:
    return ret;
}

看下binder_thread_write写操作:

static int binder_thread_write(struct binder_proc *proc,
            struct binder_thread *thread,
            binder_uintptr_t binder_buffer, size_t size,
            binder_size_t *consumed)
{
    uint32_t cmd;
    struct binder_context *context = proc->context;
    void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
    void __user *ptr = buffer + *consumed;
    void __user *end = buffer + size;

    while (ptr < end && thread->return_error == BR_OK) {
        if (get_user(cmd, (uint32_t __user *)ptr))
            return -EFAULT;
        ptr += sizeof(uint32_t);
        trace_binder_command(cmd);
        if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
            binder_stats.bc[_IOC_NR(cmd)]++;
            proc->stats.bc[_IOC_NR(cmd)]++;
            thread->stats.bc[_IOC_NR(cmd)]++;
        }
        switch (cmd) {
         ......
         //我们前面发送的命令就是BC_TRANSACTION
         case BC_TRANSACTION:
         case BC_REPLY: {
            struct binder_transaction_data tr;
            //拷贝用户空间数据到内核空间tr
            if (copy_from_user(&tr, ptr, sizeof(tr)))
                return -EFAULT;
            ptr += sizeof(tr);
            binder_transaction(proc, thread, &tr,
                       cmd == BC_REPLY, 0);
            break;
        }
    }
    return 0;
}

static void binder_transaction(struct binder_proc *proc,
                   struct binder_thread *thread,
                   struct binder_transaction_data *tr, int reply,
                   binder_size_t extra_buffers_size)
{
    ......
    if (reply) {
        ......
    } else {
        //因为我们传的tr->target.handle为0,也就是ServiceManager进程
        if (tr->target.handle) {
            ......
        } else {
            //直接获取ServiceManager的在Binder驱动中的binder_node目标节点
            target_node = context->binder_context_mgr_node;
        }
        //获取ServiceManager的进程
        target_proc = target_node->proc;
    }
    ......
    if (target_thread) {
        e->to_thread = target_thread->pid;
        //获取ServiceManager的TODO队列和等待队列
        target_list = &target_thread->todo;
        target_wait = &target_thread->wait;
    }
    //分配两个结构体内存
    t = kzalloc(sizeof(*t), GFP_KERNEL);
    binder_stats_created(BINDER_STAT_TRANSACTION);

    tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
    binder_stats_created(BINDER_STAT_TRANSACTION_COMPLETE);
    ......
    //为target_proc分配一块Buffer
    t->buffer = binder_alloc_buf(target_proc, tr->data_size,
        tr->offsets_size, extra_buffers_size,
        !reply && (t->flags & TF_ONE_WAY));
    ......
    //向target_list,也就是ServiceManager的TODO队列,添加BINDER_WORK_TRANSACTION事务
    t->work.type = BINDER_WORK_TRANSACTION;
    list_add_tail(&t->work.entry, target_list);
    //向当前线程的TODO队列添加BINDER_WORK_TRANSACTION_COMPLETE事务
    tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
    list_add_tail(&tcomplete->entry, &thread->todo);
    //如果ServiceManager进程正在等待,则唤醒
    if (target_wait) {
        if (reply || !(t->flags & TF_ONE_WAY))
            wake_up_interruptible_sync(target_wait);
        else
            wake_up_interruptible(target_wait);
    }
    return;
} 

这里写图片描述

对比这张Binder架构图,Client就是cameraserver进程,Service就是servicemanager进程,整个注册服务的过程就是cameraserver进程发送BC_TRANSACTION命令到Binder驱动中,然后Binder驱动发送BR_TRANSACTION命令到servermanager进程中注册,这里会生成一个handle,用来标识”media.camera”服务,然后将此服务添加到svclist全局链表中。然后通过BC_REPLY命令将返回结果发送到Binder驱动中,Binder驱动再通过BR_REPLY命令将结果发送给cameraserver进程。

至此,CameraService的servicename和实例就在ServiceManager中注册了,之后别的进程即可通过ServiceManager跨进程获取CameraService服务。并且CameraService通过onFirstRef()函数跟Camera HAL层联系起来了。

作者:lb377463323
出处:http://blog.csdn.net/lb377463323
原文链接:http://blog.csdn.net/lb377463323/article/details/78796915
转载请注明出处!

;