Bootstrap

Cholesky分解、乔列斯基分解

一、简介

1.1 定理

Cholesky分解法 又叫 平方根法,是一种分解 正定Hermite矩阵 (即 A = A H \boldsymbol A = \boldsymbol A^\mathrm H A=AH ) 的方法,以下我用实数域 (即 对称正定阵 A = A T \boldsymbol A = \boldsymbol A^\mathrm T A=AT) 来说明。

定理:若矩阵 A ∈ R n × n \boldsymbol A \in \mathbb R^{n\times n} ARn×n 正定,且 A = A T \boldsymbol A=\boldsymbol A^{\mathrm T} A=AT,则存在唯一下三角矩阵 L ∈ R n × n \boldsymbol L \in \mathbb R^{n\times n} LRn×n ,使得:
A = L L T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T} A=LLT

证明:(暂略,有时间补)

1.2 分解方法

记:
A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n )   L = ( l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 … l n n )    L T = ( l 11 l 21 … l n 1 l 22 … l n 2 ⋱ ⋮ l n n ) \boldsymbol A= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix} \\ ~ \\ \boldsymbol L= \begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} ~~ \boldsymbol L^\mathrm T= \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ & l_{22} & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \\ \end{pmatrix} A=a11a21an1a12a22an2a1na2nann L=l11l21ln1l22ln2lnn  LT=l11l21l22ln1ln2lnn

那么:
( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ) = ( l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 … l n n ) ( l 11 l 21 … l n 1 l 22 … l n 2 ⋱ ⋮ l n n )   = ( l 11 2 … … … … l 11 l 21 l 21 2 + l 22 2 … … … l 11 l 31 l 31 l 21 + l 32 l 22 l 31 2 + l 32 2 + l 33 2 … … ⋮ ⋮ ⋮ ⋱ ⋮ l 11 l n 1 l n 1 l 21 + l n 2 l 22 l n 1 l 31 + l n 2 l 32 + l n 3 l 33 … ∑ i = 1 n l n i 2 ) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix}= \begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ & l_{22} & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \\ \end{pmatrix} \\ ~ \\ =\begin{pmatrix} l_{11}^2 & \dots & \dots & \dots & \dots \\ l_{11}l_{21} & l_{21}^2+l_{22}^2 & \dots & \dots & \dots \\ l_{11}l_{31} & l_{31}l_{21}+l_{32}l_{22} & l_{31}^2+l_{32}^2+l_{33}^2 & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{11}l_{n1} & l_{n1}l_{21}+l_{n2}l_{22} & l_{n1}l_{31}+l_{n2}l_{32}+l_{n3}l_{33} & \dots & \displaystyle\sum_{i=1}^nl_{ni}^2 \\ \end{pmatrix} a11a21an1a12a22an2a1na2nann=l11l21ln1l22ln2lnnl11l21l22ln1ln2lnn =l112l11l21l11l31l11ln1l212+l222l31l21+l32l22ln1l21+ln2l22l312+l322+l332ln1l31+ln2l32+ln3l33i=1nlni2

由于 A \boldsymbol A A 是对称矩阵,所以我们只看下三角:
( a 11 a 21 a 22 a 31 a 32 a 33 ⋮ ⋮ ⋮ ⋱ a n 1 a n 2 a n 3 … a n n ) = ( l 11 2 l 11 l 21 l 21 2 + l 22 2 l 11 l 31 l 31 l 21 + l 32 l 22 l 31 2 + l 32 2 + l 33 2 ⋮ ⋮ ⋮ ⋱ l 11 l n 1 l n 1 l 21 + l n 2 l 22 l n 1 l 31 + l n 2 l 32 + l n 3 l 33 … ∑ i = 1 n l n i 2 ) \begin{pmatrix} \textcolor{#FF0000}{a_{11}} \\ \textcolor{#FF0000}{a_{21}} & \textcolor{#DFCC00}{a_{22}} \\ \textcolor{#FF0000}{a_{31}} & \textcolor{#DFCC00}{a_{32}} & \textcolor{#00CC00}{a_{33}} \\ \textcolor{#FF0000}{\vdots} & \textcolor{#DFCC00}{\vdots} & \textcolor{#00CC00}{\vdots} & \textcolor{#0099FF}{\ddots} \\ \textcolor{#FF0000}{a_{n1}} & \textcolor{#DFCC00}{a_{n2}} & \textcolor{#00CC00}{a_{n3}} & \textcolor{#0099FF}{\dots} & \textcolor{#BB00FF}{a_{nn}} \\ \end{pmatrix}= \begin{pmatrix} \textcolor{#FF0000}{l_{11}^2} \\ \textcolor{#FF0000}{l_{11}l_{21}} & \textcolor{#DFCC00}{l_{21}^2+l_{22}^2} \\ \textcolor{#FF0000}{l_{11}l_{31}} & \textcolor{#DFCC00}{l_{31}l_{21}+l_{32}l_{22}} & \textcolor{#00CC00}{l_{31}^2+l_{32}^2+l_{33}^2} \\ \textcolor{#FF0000}{\vdots} & \textcolor{#DFCC00}{\vdots} & \textcolor{#00CC00}{\vdots} & \textcolor{#0099FF}{\ddots} \\ \textcolor{#FF0000}{l_{11}l_{n1}} & \textcolor{#DFCC00}{l_{n1}l_{21}+l_{n2}l_{22}} & \textcolor{#00CC00}{l_{n1}l_{31}+l_{n2}l_{32}+l_{n3}l_{33}} & \textcolor{#0099FF}{\dots} & \textcolor{#BB00FF}{\displaystyle\sum_{i=1}^nl_{ni}^2} \\ \end{pmatrix} a11a21a31an1a22a32an2a33an3ann=l112l11l21l11l31l11ln1l212+l222l31l21+l32l22ln1l21+ln2l22l312+l322+l332ln1l31+ln2l32+ln3l33i=1nlni2

按照从左到右 (绿) 的顺序,逐列对应元素计算,便可将所有 L \boldsymbol L L 的元素 l i j l_{ij} lij 求出来


二、应用

2.1 线性方程求解

对于线性方程组 A X = B \boldsymbol A\boldsymbol X=\boldsymbol B AX=B,其中 A ∈ R n × n \boldsymbol A \in \mathbb R^{n\times n} ARn×n 正定,且 A = A T \boldsymbol A=\boldsymbol A^{\mathrm T} A=AT,那么求解方程可以使用 Cholesky分解:

  1. 对矩阵 A \boldsymbol A A 进行 Cholesky分解 得, A = L L T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T} A=LLT,则原方程化为 L L T X = B \boldsymbol L\boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol B LLTX=B
  2. L T X = Y \boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol Y LTX=Y,此时,解下三角方程 L Y = B \boldsymbol L\boldsymbol Y=\boldsymbol B LY=B,求得 Y \boldsymbol Y Y
  3. 解上三角方程 L T X = Y \boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol Y LTX=Y,求得 X \boldsymbol X X

通过 Cholesky分解 将 普通线性方程求解 改为两次简单的 三角阵方程组求解 ,降低计算复杂度。

2.2 求逆矩阵

三角矩阵的逆比较好求,从而可以很快求出原矩阵的逆。


三、扩展Cholesky分解

3.1 简介

从 1.2 节可以知道,矩阵 L \boldsymbol L L 对角线上的元素在计算时,都需要开方操作,增加计算量的同时还可能损失精度。引进一种 Cholesky的扩展分解方法:
A = L D L T \boldsymbol A = \boldsymbol L\boldsymbol D\boldsymbol L^{\mathrm T} A=LDLT

证明:
我们已知,正定对称阵 A \boldsymbol A A 可以分解为: A = L L T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T} A=LLT

L \boldsymbol L L 可以写成:

L = ( l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 … l n n )   = ( 1 l 21 / l 11 1 ⋮ ⋮ ⋱ l n 1 / l 11 l n 2 / l 22 … 1 ) ( l 11 l 22 ⋱ l n n )   = d e f L 1 Λ \begin{aligned} \boldsymbol L &=\begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} \\ ~ \\ &=\begin{pmatrix} 1 & \\ l_{21}/l_{11} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1}/l_{11} & l_{n2}/l_{22} & \dots & 1 \\ \end{pmatrix} \begin{pmatrix} l_{11} & \\ & l_{22} \\ & & \ddots \\ & & & l_{nn} \\ \end{pmatrix} \\ ~ \\ &\overset{\mathrm{def}}{=}\boldsymbol L_1 \boldsymbol \Lambda \end{aligned} L  =l11l21ln1l22ln2lnn=1l21/l11ln1/l111ln2/l221l11l22lnn=defL1Λ

同理 L T = Λ L 1 T \boldsymbol L^\mathrm T = \boldsymbol \Lambda\boldsymbol L_1^\mathrm T LT=ΛL1T

那么 A = L L T = L 1 Λ 2 L 1 T = L 1 D L 1 T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T}=\boldsymbol L_1\boldsymbol \Lambda^2\boldsymbol L_1^{\mathrm T} = \boldsymbol L_1\boldsymbol D\boldsymbol L_1^{\mathrm T} A=LLT=L1Λ2L1T=L1DL1T

3.2 分解方法

记:
A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n )   L = ( 1 l 21 1 ⋮ ⋮ ⋱ l n 1 l n 2 … 1 )    L T = ( 1 l 21 … l n 1 1 … l n 2 ⋱ ⋮ 1 )    D = ( d 1 d 2 ⋱ d n ) \boldsymbol A= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix} \\ ~ \\ \boldsymbol L= \begin{pmatrix} 1 & \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & 1 \\ \end{pmatrix} ~~ \boldsymbol L^\mathrm T= \begin{pmatrix} 1 & l_{21} & \dots & l_{n1} \\ & 1 & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & 1 \\ \end{pmatrix} ~~ \boldsymbol D= \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \\ \end{pmatrix} A=a11a21an1a12a22an2a1na2nann L=1l21ln11ln21  LT=1l211ln1ln21  D=d1d2dn

那么:
( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 … a n n ) = ( 1 l 21 1 ⋮ ⋮ ⋱ l n 1 l n 2 … 1 ) ( d 1 d 2 ⋱ d n ) ( 1 l 21 … l n 1 1 … l n 2 ⋱ ⋮ 1 )   = ( d 1 … … … … d 1 l 21 d 1 l 21 2 + d 2 … … … d 1 l 31 d 1 l 31 l 21 + l 32 l 22 d 1 l 31 2 + d 2 l 32 2 + d 3 … … ⋮ ⋮ ⋮ ⋱ ⋮ d 1 l n 1 d 1 l n 1 l 21 + d 2 l n 2 d 1 l n 1 l 31 + d 2 l n 2 l 32 + d 3 l n 3 … d n + ∑ i = 1 n − 1 d i l n i 2 ) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix}= \begin{pmatrix} 1 & \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & 1 \\ \end{pmatrix} \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \\ \end{pmatrix} \begin{pmatrix} 1 & l_{21} & \dots & l_{n1} \\ & 1 & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & 1 \\ \end{pmatrix} \\ ~ \\ =\begin{pmatrix} d_1 & \dots & \dots & \dots & \dots \\ d_1l_{21} & d_1l_{21}^2+d_2 & \dots & \dots & \dots \\ d_1l_{31} & d_1l_{31}l_{21}+l_{32}l_{22} & d_1l_{31}^2+d_2l_{32}^2+d_3 & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_1l_{n1} & d_1l_{n1}l_{21}+d_2l_{n2} & d_1l_{n1}l_{31}+d_2l_{n2}l_{32}+d_3l_{n3} & \dots & \displaystyle d_n+\sum_{i=1}^{n-1}d_il_{ni}^2 \\ \end{pmatrix} a11a21an1a12a22an2a1na2nann=1l21ln11ln21d1d2dn1l211ln1ln21 =d1d1l21d1l31d1ln1d1l212+d2d1l31l21+l32l22d1ln1l21+d2ln2d1l312+d2l322+d3d1ln1l31+d2ln2l32+d3ln3dn+i=1n1dilni2

计算的方式与之前类似,从左至右直接逐列对应计算即可。

可以看出来这种方式不需要开方。

;