spark yarn-cluster应用提交过程跟踪
闲扯
依稀还记得当初被领导问着想做实时,还是做离线,我毅然选择了这个名字自带闪光点的spark。
后来出差做了实时项目,也算是入了spark的门,带着无限的骄傲和自豪能对做离线的同事指手画脚,现在看来,当初的做法未免有点幼稚,不过在那storm盛行flink还未兴起的时代,spark独霸实时离线处理两大领域,能够用它做项目那简直是技术人员口中茶余饭后吹牛皮耀眼的谈资。
时过境迁,spark已不再独领风骚一枝独秀,flink的崛起撼动了spark的地位,但是正因为这样的更新换代,技术才不会停滞不前,思想才不会落后。
最近又捞起放下已久的spark,一方面是为了学习,另一方面也是为了找工作能够和技术官多扯两句,证明工作几年来还是有点沉淀,同时也践行着一边输出,一边学习的学习方法,输出便是最好的总结。
加油吧,技术人。
文章目录
- spark yarn-cluster应用提交过程跟踪
- 一、spark执行入口类
- 二、主要执行类
- 1. org.apache.spark.deploy.SparkSubmit
- 2. org.apache.spark.deploy.yarn.Client
- 3. org.apache.spark.deploy.yarn.ApplicationMaster
- 4. org.apache.spark.deploy.yarn.YarnAllocator
- 5. org.apache.spark.deploy.yarn.ExecutorRunnable
- 6. org.apache.spark.executor.CoarseGrainedExecutorBackend
- 7. org.apache.spark.rpc.netty.Dispatcher
- 附录
首先贴出 spark-submit 执行命令:
spark-submit --master yarn \
--deploy-mode cluster \
--executor-memory 1G \
--executor-cores 1 \
--class org.apache.spark.examples.SparkPi \
/opt/module/spark/examples/jars/spark-examples_2.11-2.2.0.jar 10000
一、spark执行入口类
1. spark-submit
话不多说,直入主题。
首先来看提交命令,该命令执行了spark-sumbit,找到bin/目录下的spark-submit
最后一段代码执行了 :
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
意思是将 org.apache.spark.deploy.SparkSubmit 和 “$@” 传给了 spark-class 这个脚本
其中 $@ 表示 在执行 spark-submit 时传入的所有参数
2. spark-class
接着我们去bin目录下找 spark-class,一大段的命令解释略过,挑主要的内容看
exec "${CMD[@]}"
过程不再分析,将该命令打印出来以后为以下信息
/opt/module/jdk1.8.0_144/bin/java -cp /opt/module/spark/conf/:/opt/module/spark/jars/*:/opt/module/hadoop-2.7.7/etc/hadoop/
org.apache.spark.deploy.SparkSubmit
--master yarn
--deploy-mode cluster
--executor-memory 1G
--executor-cores 1
--class org.apache.spark.examples.SparkPi
/opt/module/spark/examples/jars/spark-examples_2.11-2.2.0.jar 10000
可以看出最终执行了 org.apache.spark.deploy.SparkSubmit 这个类,既然知道了该类为入口类,double shift 在idea中搜索该类
此时,spark执行流程跟踪已告别了简单的脚本加工环节,进入到真正的源码环节了。
二、主要执行类
1. org.apache.spark.deploy.SparkSubmit
来到 SparkSubmit 类中,寻找main方法,
def main() ·····> case SparkSubmitAction.SUBMIT => submit(appArgs)
def private def runMain() ·····> mainMethod.invoke(null, childArgs.toArray)
该反射执行的是 org.apache.spark.deploy.yarn.Client 这个类
模式匹配进入到 submit(appArgs) 方法中,在该方法中,归根结底地调用了 doRunMain() 这个方法,这个方法里又归根结底地调用了 runMain() 这个方法,方法太长就不贴详细代码了,只贴出关键部分信息,如下:
private def runMain()
·····> mainClass = Utils.classForName(childMainClass)
·····> val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
·····> mainMethod.invoke(null, childArgs.toArray)
依旧使用反射来执行 childMainClass 这个类,但是这个参数又是什么呢?
继续查看代码,发现该参数是从 prepareSubmitEnvironment(args) 这个方法中获取到的。
因为我们使用的是 yarn-cluster 模式提交的任务,自然 childMainClass = "org.apache.spark.deploy.yarn.Client"
if (isYarnCluster) {
childMainClass = "org.apache.spark.deploy.yarn.Client"
if (args.isPython) {
childArgs += ("--primary-py-file", args.primaryResource)
childArgs += ("--class", "org.apache.spark.deploy.PythonRunner")
} else if (args.isR) {
val mainFile = new Path(args.primaryResource).getName
childArgs += ("--primary-r-file", mainFile)
childArgs += ("--class", "org.apache.spark.deploy.RRunner")
} else {
if (args.primaryResource != SparkLauncher.NO_RESOURCE) {
childArgs += ("--jar", args.primaryResource)
}
childArgs += ("--class", args.mainClass)
}
if (args.childArgs != null) {
args.childArgs.foreach { arg => childArgs += ("--arg", arg) }
}
}
流程似乎变得清晰起来,我们跳到 org.apache.spark.deploy.yarn.Client 这个类中。double shift搜索不到该类,这时需要引入 spark-yarn 的pom依赖并下载源码才能查看的到。
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-yarn_2.11</artifactId>
<version>2.2.0</version>
</dependency>
2. org.apache.spark.deploy.yarn.Client
通过包名可以看出,这部分内容应该跟yarn扯上了关系,至于是什么关系,我们接着看代码
def main(argStrings: Array[String]) {
if (!sys.props.contains("SPARK_SUBMIT")) {
logWarning("WARNING: This client is deprecated and will be removed in a " +
"future version of Spark. Use ./bin/spark-submit with \"--master yarn\"")
}
// Set an env variable indicating we are running in YARN mode.
// Note that any env variable with the SPARK_ prefix gets propagated to all (remote) processes
System.setProperty("SPARK_YARN_MODE", "true")
val sparkConf = new SparkConf
// SparkSubmit would use yarn cache to distribute files & jars in yarn mode,
// so remove them from sparkConf here for yarn mode.
//因为使用到了yarn模式,使用yarn本身的资源文件
sparkConf.remove("spark.jars")
sparkConf.remove("spark.files")
val args = new ClientArguments(argStrings)
new Client(args, sparkConf).run()
}
代码最后一段 new 了一个 Client 对象,并调用了 run 方法。这里用到了yarn,yarn的简介见文末附录
在run方法中
def run() ·····> this.appId = submitApplication()
进入到 submitApplication() 方法中
def submitApplication(): ApplicationId = {
var appId: ApplicationId = null
try {
launcherBackend.connect()
// Setup the credentials before doing anything else,
// so we have don't have issues at any point.
setupCredentials()
yarnClient.init(yarnConf)
yarnClient.start()
logInfo("Requesting a new application from cluster with %d NodeManagers"
.format(yarnClient.getYarnClusterMetrics.getNumNodeManagers))
// 通过向ResourceManager提交执行任务申请,返回了一个应用封装,包含了appId
// 获取到这个appId以后,然后才能真正的执行应用
val newApp = yarnClient.createApplication()
val newAppResponse = newApp.getNewApplicationResponse()
appId = newAppResponse.getApplicationId()
//设置与hadoop通讯的客户端
new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT),
Option(appId.toString)).setCurrentContext()
// 验证集群是否有足够的资源供我们使用
verifyClusterResources(newAppResponse)
// 为ApplicationMaster的运行设置上下文环境
val containerContext = createContainerLaunchContext(newAppResponse)
val appContext = createApplicationSubmissionContext(newApp, containerContext)
logInfo(s"Submitting application $appId to ResourceManager")
yarnClient.submitApplication(appContext)
launcherBackend.setAppId(appId.toString)
reportLauncherState(SparkAppHandle.State.SUBMITTED)
appId
} catch {
case e: Throwable =>
if (appId != null) {
cleanupStagingDir(appId)
}
throw e
}
}
当前代码执行过程中,以 YarnClient 的身份向 ResourceManager 申请提交任务。在createContainerLaunchContext(newAppResponse) 方法中,command 参数中封装了所要执行的命令,并将这个 command 设置到 amContainer: ContainerLaunchContext 中并返回该Container,这个Container即是启动 ApplicationMaster 的 Container。 但此时并未启动amContainer。
private def createContainerLaunchContext(newAppResponse: GetNewApplicationResponse){
......
val amClass =
if (isClusterMode) {
Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
} else {
Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
}
......
val commands = prefixEnv ++
Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
javaOpts ++ amArgs ++
Seq(
"1>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout",
"2>", ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr")
// TODO: it would be nicer to just make sure there are no null commands here
val printableCommands = commands.map(s => if (s == null) "null" else s).toList
amContainer.setCommands(printableCommands.asJava)
......
val securityManager = new SecurityManager(sparkConf)
amContainer.setApplicationACLs(
YarnSparkHadoopUtil.getApplicationAclsForYarn(securityManager).asJava)
setupSecurityToken(amContainer)
amContainer
}
可以看到,针对不同的模式,amClass启动执行的类也可以不同。这里 amClass = “org.apache.spark.deploy.yarn.ApplicationMaster”。
既然设置好了提交启动 ApplicationMaster的Container 的上下文,这时候应该设置创建ApplicationMaster 的上下文对象了
def submitApplication() ·····> def createApplicationSubmissionContext()
参数和环境都准备好了,紧接着提交该请求
def submitApplication() ·····> yarnClient.submitApplication(appContext)
在这里发现又执行了提交 application 的动作,回顾之前的那次提交和这一次的提交。大概情形如下:
第一次是 yarnClient 向 ResourceManager 提出申请,告诉它我有任务要执行啦。
ResourceManager 收到申请以后回复说,好嘞,我给你个号码(applicationId),你先拿着这个号码规划着你需要用到哪些东西,完了以后把这些东西统一set到 amContainer 里,接下来就不用管啦。
一切准备妥当以后,yarnClient 就执行了第二次真正的任务提交。
yarnClient 向 ResourceManager 提交请求,ResourceManager 启动一个Container来启动ApplicationMaster。只有当成功提交到yarn上之后才会返回之前已经拿到的appId,否则会抛出异常。此时,提交任务已创建,接下来怎么执行,我们就需要切入到 org.apache.spark.deploy.yarn.ApplicationMaster 这个类中去查看了
3. org.apache.spark.deploy.yarn.ApplicationMaster
老规矩,main方法走起。
def main(args: Array[String])
·····> master = new ApplicationMaster(amArgs, new YarnRMClient)
·····> System.exit(master.run())
在main方法中new了一个 ApplicationMaster 对象,并执行了run方法,具体内容我们进入到run方法中
final def run()
......
if (isClusterMode) {
runDriver(securityMgr)
} else {
runExecutorLauncher(securityMgr)
}
......
可以看到,根据不同的模式此处的ApplicationMaster执行了不同的方法,也意味着启动了不同的服务,顾名思义 runDriver() ,好像表达的意思是运行Driver,那这里所说的 Driver 是不是跟我们经常说的Driver、Executor是一样的吗,这里的话我们来看一下 runDriver() 这个方法
private def runDriver(securityMgr: SecurityManager): Unit = {
addAmIpFilter()
//启动用户线程(Driver),startUserApplication()里面已经调用了start方法
userClassThread = startUserApplication()
// This a bit hacky, but we need to wait until the spark.driver.port property has
// been set by the Thread executing the user class.
logInfo("Waiting for spark context initialization...")
val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
try {
//等待获取 Driver 中创建的 sparkContext对象
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
//如果返回的sparkContext对象不为空,则向ApplicationMaster注册
if (sc != null) {
rpcEnv = sc.env.rpcEnv
val driverRef = runAMEndpoint(
sc.getConf.get("spark.driver.host"),
sc.getConf.get("spark.driver.port"),
isClusterMode = true)
registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.webUrl), securityMgr)
} else {
// Sanity check; should never happen in normal operation, since sc should only be null
// if the user app did not create a SparkContext.
if (!finished) {
throw new IllegalStateException("SparkContext is null but app is still running!")
}
}
userClassThread.join()
} catch {
case e: SparkException if e.getCause().isInstanceOf[TimeoutException] =>
logError(
s"SparkContext did not initialize after waiting for $totalWaitTime ms. " +
"Please check earlier log output for errors. Failing the application.")
finish(FinalApplicationStatus.FAILED,
ApplicationMaster.EXIT_SC_NOT_INITED,
"Timed out waiting for SparkContext.")
}
}
首先执行了 startUserApplication() 这个方法,紧接着执行了registerAM()方法,之后将执行userClassThread.join()这个方法,他的作用是阻塞主线程并等待 userClassThread 这个线程执行完毕
来看 startUserApplication()方法
private def startUserApplication(): Thread = {
logInfo("Starting the user application in a separate Thread")
val classpath = Client.getUserClasspath(sparkConf)
val urls = classpath.map { entry =>
new URL("file:" + new File(entry.getPath()).getAbsolutePath())
}
val userClassLoader =
if (Client.isUserClassPathFirst(sparkConf, isDriver = true)) {
new ChildFirstURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
} else {
new MutableURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
}
var userArgs = args.userArgs
if (args.primaryPyFile != null && args.primaryPyFile.endsWith(".py")) {
// When running pyspark, the app is run using PythonRunner. The second argument is the list
// of files to add to PYTHONPATH, which Client.scala already handles, so it's empty.
userArgs = Seq(args.primaryPyFile, "") ++ userArgs
}
if (args.primaryRFile != null && args.primaryRFile.endsWith(".R")) {
// TODO(davies): add R dependencies here
}
val mainMethod = userClassLoader.loadClass(args.userClass)
.getMethod("main", classOf[Array[String]])
val userThread = new Thread {
override def run() {
try {
mainMethod.invoke(null, userArgs.toArray)
finish(FinalApplicationStatus.SUCCEEDED, ApplicationMaster.EXIT_SUCCESS)
logDebug("Done running users class")
} catch {
case e: InvocationTargetException =>
e.getCause match {
case _: InterruptedException =>
// Reporter thread can interrupt to stop user class
case SparkUserAppException(exitCode) =>
val msg = s"User application exited with status $exitCode"
logError(msg)
finish(FinalApplicationStatus.FAILED, exitCode, msg)
case cause: Throwable =>
logError("User class threw exception: " + cause, cause)
finish(FinalApplicationStatus.FAILED,
ApplicationMaster.EXIT_EXCEPTION_USER_CLASS,
"User class threw exception: " + cause)
}
sparkContextPromise.tryFailure(e.getCause())
} finally {
// Notify the thread waiting for the SparkContext, in case the application did not
// instantiate one. This will do nothing when the user code instantiates a SparkContext
// (with the correct master), or when the user code throws an exception (due to the
// tryFailure above).
sparkContextPromise.trySuccess(null)
}
}
}
userThread.setContextClassLoader(userClassLoader)
userThread.setName("Driver")
userThread.start()
userThread
}
通过反射的方式启动一个 线程 执行了 userClass 这个类,这个类就是我们的用户类spark任务 "org.apache.spark.examples.SparkPi"
并且可以看到,将该线程的name参数设置为"Driver",是不是很熟悉。这也验证了 yarn-cluster 模式下在 Driver运行在 ApplicationMaster 中这一说法。
当然,光启动了Driver可不行,接着来看后续又做了什么操作
private def registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.webUrl), securityMgr){
......
allocator = client.register(driverUrl,
driverRef,
yarnConf,
_sparkConf,
uiAddress,
historyAddress,
securityMgr,
localResources)
allocator.allocateResources()
reporterThread = launchReporterThread()
}
def register(
driverUrl: String,
driverRef: RpcEndpointRef,
conf: YarnConfiguration,
sparkConf: SparkConf,
uiAddress: Option[String],
uiHistoryAddress: String,
securityMgr: SecurityManager,
localResources: Map[String, LocalResource]
): YarnAllocator = {
amClient = AMRMClient.createAMRMClient()
amClient.init(conf)
amClient.start()
this.uiHistoryAddress = uiHistoryAddress
val trackingUrl = uiAddress.getOrElse {
if (sparkConf.get(ALLOW_HISTORY_SERVER_TRACKING_URL)) uiHistoryAddress else ""
}
logInfo("Registering the ApplicationMaster")
synchronized {
amClient.registerApplicationMaster(Utils.localHostName(), 0, trackingUrl)
registered = true
}
new YarnAllocator(driverUrl, driverRef, conf, sparkConf, amClient, getAttemptId(), securityMgr,
localResources, new SparkRackResolver())
}
当 Driver 启动完成之后,通过从 conf 中获取 Driver 的终端引用 driverRef ,并执行 registerAM() 方法
该方法主要有两个功能:
1:向 ResourceManger 注册 ApplicationMaster
2:获取 YarnAllocator 对象,负责向RM请求容器资源
在 allocator.allocateResources() 方法中,获取分配的容器列表
·····> val allocateResponse = amClient.allocate(progressIndicator)
·····> val allocatedContainers : List[Container] = allocateResponse.getAllocatedContainers()
4. org.apache.spark.deploy.yarn.YarnAllocator
def handleAllocatedContainers(allocatedContainers: Seq[Container])
此方法中实现了节点本地化,机架本地化策略
接着调用了 runAllocatedContainers(containersToUse)
private def runAllocatedContainers(containersToUse: ArrayBuffer[Container]): Unit = {
for (container <- containersToUse) {
executorIdCounter += 1
val executorHostname = container.getNodeId.getHost
val containerId = container.getId
val executorId = executorIdCounter.toString
assert(container.getResource.getMemory >= resource.getMemory)
logInfo(s"Launching container $containerId on host $executorHostname " +
s"for executor with ID $executorId")
def updateInternalState(): Unit = synchronized {
numExecutorsRunning += 1
executorIdToContainer(executorId) = container
containerIdToExecutorId(container.getId) = executorId
val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname,
new HashSet[ContainerId])
containerSet += containerId
allocatedContainerToHostMap.put(containerId, executorHostname)
}
if (numExecutorsRunning < targetNumExecutors) {
if (launchContainers) {
launcherPool.execute(new Runnable {
override def run(): Unit = {
try {
new ExecutorRunnable(
Some(container),
conf,
sparkConf,
driverUrl,
executorId,
executorHostname,
executorMemory,
executorCores,
appAttemptId.getApplicationId.toString,
securityMgr,
localResources
).run()
updateInternalState()
} catch {
case NonFatal(e) =>
logError(s"Failed to launch executor $executorId on container $containerId", e)
// Assigned container should be released immediately to avoid unnecessary resource
// occupation.
amClient.releaseAssignedContainer(containerId)
}
}
})
} else {
// For test only
updateInternalState()
}
} else {
logInfo(("Skip launching executorRunnable as runnning Excecutors count: %d " +
"reached target Executors count: %d.").format(numExecutorsRunning, targetNumExecutors))
}
}
}
进入到run()方法中,有一个startContainer()方法,继续进入。
5. org.apache.spark.deploy.yarn.ExecutorRunnable
由类名可以知道,该类处理的是Executor相关的操作
def run(): Unit = {
logDebug("Starting Executor Container")
nmClient = NMClient.createNMClient()
nmClient.init(conf)
nmClient.start()
startContainer()
}
def startContainer(): java.util.Map[String, ByteBuffer] = {
......
val commands = prepareCommand()
ctx.setCommands(commands.asJava)
......
nmClient.startContainer(container.get, ctx)
......
}
private def prepareCommand(): List[String] = {
......
val commands = prefixEnv ++
Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
javaOpts ++
Seq("org.apache.spark.executor.CoarseGrainedExecutorBackend",
"--driver-url", masterAddress,
"--executor-id", executorId,
"--hostname", hostname,
"--cores", executorCores.toString,
"--app-id", appId) ++
userClassPath ++
Seq(
s"1>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stdout",
s"2>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stderr")
......
}
经过一通组装,启动 executor 的方式和启动 ApplicationMaster 的方式如出一辙,都是通过封装command参数来执行目标类 "org.apache.spark.executor.CoarseGrainedExecutorBackend"
。貌似好像大概似乎和executor有点关系了哈。
接下来我们进入到该类中继续跟踪。
6. org.apache.spark.executor.CoarseGrainedExecutorBackend
依然main方法走起
def main(args: Array[String]) {
......
run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
......
}
private def run(
driverUrl: String,
executorId: String,
hostname: String,
cores: Int,
appId: String,
workerUrl: Option[String],
userClassPath: Seq[URL]) {
......
//创建Executor的执行环境
val env = SparkEnv.createExecutorEnv(
driverConf, executorId, hostname, port, cores, cfg.ioEncryptionKey, isLocal = false)
env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
workerUrl.foreach { url =>
env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
}
env.rpcEnv.awaitTermination()
......
}
通过给定的一系列参数创建 ExecutorEnv,具体实现类是 NettyRpcEnv,并创建名为 Executor 的通信终端。
在 setupEndpoint() 方法中,会在 dispatcher 中注册 RpcEndpoint 。
Dispatcher是一个消息分发器,负责将消息分发给适合的Endpoint。
7. org.apache.spark.rpc.netty.Dispatcher
在 registerRpcEndpoint() 方法中,实例化 EndpointData 的过程中会维护一个 Inbox 用于接收消息,同时会放入第一个消息 OnStart 。从这也可以看出,只要注册了一个Endpoint,就会同时存在一个专门用来接收消息的Inbox。
org.apache.spark.rpc.netty.Inbox
inbox.synchronized {messages.add(OnStart) }
def registerRpcEndpoint(name: String, endpoint: RpcEndpoint): NettyRpcEndpointRef = {
val addr = RpcEndpointAddress(nettyEnv.address, name)
val endpointRef = new NettyRpcEndpointRef(nettyEnv.conf, addr, nettyEnv)
synchronized {
if (stopped) {
throw new IllegalStateException("RpcEnv has been stopped")
}
if (endpoints.putIfAbsent(name, new EndpointData(name, endpoint, endpointRef)) != null) {
throw new IllegalArgumentException(s"There is already an RpcEndpoint called $name")
}
val data = endpoints.get(name)
endpointRefs.put(data.endpoint, data.ref)
receivers.offer(data) // for the OnStart message
}
endpointRef
}
既然已经向 CoarseGrainedExecutorBackend 这个终端发送了消息,那我们来看看是怎么处理的把,ctrl + f 搜索到 OnStart 的用处,进入到 CoarseGrainedExecutorBackend 类中的重写方法 onStart() 中
override def onStart() {
logInfo("Connecting to driver: " + driverUrl)
rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>
// This is a very fast action so we can use "ThreadUtils.sameThread"
driver = Some(ref)
ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
}(ThreadUtils.sameThread).onComplete {
// This is a very fast action so we can use "ThreadUtils.sameThread"
case Success(msg) =>
// Always receive `true`. Just ignore it
case Failure(e) =>
exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)
}(ThreadUtils.sameThread)
}
从代码可以看出,拿到了 Driver 的 RpcEndpointRef 后,会向 Driver 发送 RegisterExecutor 消息,这一步也被称之为反向注册,即 Executor 向 Driver 端注册。既然是通过DriverRef发送的信息,那么接收方肯定是 Driver 咯,在通信终端 DriverEndpoint 中寻找处理的消息的方法,可以看到在 org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend
文件中的 内部类 DriverEndpoint 中的 receiveAndReply() 方法里
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls) =>
if (executorDataMap.contains(executorId)) {
executorRef.send(RegisterExecutorFailed("Duplicate executor ID: " + executorId))
context.reply(true)
} else if (scheduler.nodeBlacklist != null &&
scheduler.nodeBlacklist.contains(hostname)) {
// If the cluster manager gives us an executor on a blacklisted node (because it
// already started allocating those resources before we informed it of our blacklist,
// or if it ignored our blacklist), then we reject that executor immediately.
logInfo(s"Rejecting $executorId as it has been blacklisted.")
executorRef.send(RegisterExecutorFailed(s"Executor is blacklisted: $executorId"))
context.reply(true)
} else {
// If the executor's rpc env is not listening for incoming connections, `hostPort`
// will be null, and the client connection should be used to contact the executor.
val executorAddress = if (executorRef.address != null) {
executorRef.address
} else {
context.senderAddress
}
logInfo(s"Registered executor $executorRef ($executorAddress) with ID $executorId")
addressToExecutorId(executorAddress) = executorId
totalCoreCount.addAndGet(cores)
totalRegisteredExecutors.addAndGet(1)
val data = new ExecutorData(executorRef, executorAddress, hostname,
cores, cores, logUrls)
// This must be synchronized because variables mutated
// in this block are read when requesting executors
CoarseGrainedSchedulerBackend.this.synchronized {
executorDataMap.put(executorId, data)
if (currentExecutorIdCounter < executorId.toInt) {
currentExecutorIdCounter = executorId.toInt
}
if (numPendingExecutors > 0) {
numPendingExecutors -= 1
logDebug(s"Decremented number of pending executors ($numPendingExecutors left)")
}
}
executorRef.send(RegisteredExecutor)
// Note: some tests expect the reply to come after we put the executor in the map
context.reply(true)
listenerBus.post(
SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))
makeOffers()
}
......
DriverEndpoint 接收到消息以后,会判断Executor是否重复注册,如果重复注册,则发送注册失败消息。如果注册成功,则记录Executor的信息并累加资源和个数,初始化生成 ExecutorData ,通过 Executor 的引用 executorRef 向 CoarseGrainedExecutorBackend 发送 RegisteredExecutor 消息,CoarseGrainedExecutorBackend 接收到消息以后,会创建 Executor 对象。
executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
到这里,创建 Executor 的过程结束。
附录
既然使用了yarn,顺便在回顾一下yarn的作用。我们知道,yarn本身的作用即是封装集群资源,提供资源管理和调度服务供应用程序使用。
yarn的组件架构:
1 ResourceManager
ResourceManager :拥有系统所有资源分配的决定权,负责集群中所有应用程序的资源分配。
其中又包含两个组件:
1.1 ApplicationManager
ApplicationManager :负责job的提交请求,为应用分配第一个 Container 来运行 ApplicationMaster,并监控 ApplicationMaster 的状态
1.2 Scheduler
Scheduler:负责任务的调度,是一个任务调度器。主要使用 FIFO 、Capacity 、Fair 调度算法
2 NodeManager
NodeManager:管理集群中独立计算节点的资源情况,负责启动和管理Container的生命周期,监控它们的资源使用情 况和运行状态并告知ResourceManager。
2.1 Container
Container:是yarn的计算单元,是执行具体应用Task的基本单位。存在于 NodeManage r中,可存在多个,但是不能跨节点存在。
3. ApplicationMaster
ApplicationMaster:每个提交的应用程序都有一个 ApplicationMaster,负责监控应用程序的运行状态,和 ResourceManager 通信申请资源和返还资源。如果说 Container 是工人,那么 Application 就是包工头。