Bootstrap

Java——反射机制的理解(运行时类、ClassLoader、动态代理)

1. 概述

(1)Reflection(反射)是被视为动态语言的关键,反射机制允许程序在执行期,通过反射获取类的信息,得到类的信息之后,就可以获取以下相关内容:

  • Class对象、构造器
  • 变量、方法
  • 私有变量、私有方法
  • 注解、泛型

(2)加载完类之后,在堆内存的方法区中就产生了一个Class类型的对象(一个类只有一个Class对象),这个对象就包含了完整的类的结构信息。我们可 以通过这个对象看到类的结构。这个对象就像一面镜子,透过这个镜子看到类的结构,所以,我们形象的称之为:反射
在这里插入图片描述

2. 动态语言 vs 静态语言

(1)动态语言
是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进;已有的函数可以被删除或是其他结构上的变化。通俗点说就是在运行时代码可以根据某些条件改变自身结构。 主要动态语言:JavaScript、Python。

(2)静态语言
与动态语言相对应的,运行时结构不可变的语言就是静态语言。如Java、C、 C++。
在这里插入图片描述

3. 理解java.lang.Class类

(1)类的加载过程:

  • 程序经过javac.exe命令以后,会生成一个或多个字节码文件,以.class结尾(一个类生成一个.class文件)。
  • 接着我们使用java.exe命令对某个字节码文件进行解释运行。相当于将某个字节码文件加载到内存中。此过程就称为类的加载
  • 加载到内存中的类,我们就称为运行时类。此运行时类,就作为Class的一个实例。

换句话说,Class的实例就对应着一个运行时类。

(2)加载到内存中的运行时类,会缓存一定的时间。在此时间之内,我们可以通过不同的方式来获取此运行时类。

4. 获取Class实例的方式

  • 方式一:若已知具体的类,通过类的class属性获取,该方法最为安全可靠, 程序性能最高:
    调用运行时类的属性:.class
  • 方式二:已知某个类的实例,调用该实例的getClass()方法获取Class对象:
    通过运行时类的对象,调用getClass()
  • 方式三:已知一个类的全类名,且该类在类路径下,可通过Class类的静态方 法forName()获取,可能抛出ClassNotFoundException:
    调用Class的静态方法:forName(String classPath)
  • 方式四:使用类的加载器:ClassLoader (了解)
@Test
    public void test3() throws ClassNotFoundException {
        //方式一:调用运行时类的属性:.class
        Class clazz1 = Person.class;
        System.out.println(clazz1);
        //方式二:通过运行时类的对象,调用getClass()
        Person p1 = new Person();
        Class clazz2 = p1.getClass();
        System.out.println(clazz2);

        //方式三:调用Class的静态方法:forName(String classPath)
        Class clazz3 = Class.forName("com.atguigu.java.Person");
//        clazz3 = Class.forName("java.lang.String");
        System.out.println(clazz3);

        System.out.println(clazz1 == clazz2);
        System.out.println(clazz1 == clazz3);

        //方式四:使用类的加载器:ClassLoader  (了解)
        ClassLoader classLoader = ReflectionTest.class.getClassLoader();
        Class clazz4 = classLoader.loadClass("com.atguigu.java.Person");
        System.out.println(clazz4);

        System.out.println(clazz1 == clazz4);
    }

哪些类型可以有Class对象?

  1. class: 外部类,成员(成员内部类,静态内部类),局部内部类,匿名内部类
  2. interface:接口
  3. []:数组 ;只要元素类型与维度一样,就是同一个Class
  4. enum:枚举
  5. annotation:注解@interface
  6. primitive type:基本数据类型
  7. void

5. 类的加载与ClassLoader的理解

当程序主动使用某个类时,若该类还未被加载到内存中,则系统会进行如下三个步骤来对该类进行初始化。
在这里插入图片描述
(1)加载:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口(即引用地址)。所有需要访问和使用类数据只能通过这个Class对象。这个加载的过程需要类加载器参与。
(2)链接:将Java类的二进制代码合并到JVM的运行状态之中的过程。

  • 验证:确保加载的类信息符合JVM规范,例如:以cafe开头,没有安全方面的问题
  • 准备:正式为类变量(static)分配内存并设置类变量默认初始值的阶段,这些内存都将在方法区中进行分配。
  • 解析:虚拟机常量池内的符号引用(常量名)替换为直接引用(地址)的过程。

(3)初始化:

  • 执行类构造器< clinit >()方法的过程。类构造器< clinit >()方法是由编译期自动收集类中所有类变量的赋值动作和静态代码块中的语句合并产生的。(类构造器是构造信息的,不是构造该类对象的构造器)。
  • 当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类的初始化。
  • 虚拟机会保证一个类的()方法在多线程环境中被正确加锁和同步。

(补充)什么时候会发生类初始化?
(1)类的主动引用(一定会发生类的初始化

  • 当虚拟机启动,先初始化main方法所在的类
  • new一个类的对象
  • 调用类的静态成员(除了final常量)和静态方法
  • 使用java.lang.reflect包的方法对类进行反射调用
  • 当初始化一个类,如果其父类没有被初始化,则先会初始化它的父类

(2)类的被动引用(不会发生类的初始化)

  • 当访问一个静态域时,只有真正声明这个域的类才会被初始化
  • 当通过子类引用父类的静态变量,不会导致子类初始化
  • 通过数组定义类引用,不会触发此类的初始化
  • 引用常量不会触发此类的初始化(常量在链接阶段就存入调用类的常 量池中了)

类加载器的作用:将class文件字节码内容加载到内存中,并将这些静态数据转换成方法区的运行时数据结构,然后在堆中生成一个代表这个类的java.lang.Class对象,作为方法区中类数据的访问入口。

类缓存:标准的JavaSE类加载器可以按要求查找类,但一旦某个类被加载到类加载器中,它将维持加载(缓存)一段时间。不过JVM垃圾回收机制可以回收这些Class对象。

JVM 规范定义了如下类型的类的加载器:
在这里插入图片描述

@Test
    public void test1(){
        //对于自定义类,使用系统类加载器进行加载
        ClassLoader classLoader = ClassLoaderTest.class.getClassLoader();
        System.out.println(classLoader);
        //调用系统类加载器的getParent():获取扩展类加载器
        ClassLoader classLoader1 = classLoader.getParent();
        System.out.println(classLoader1);
        //调用扩展类加载器的getParent():无法获取引导类加载器
        //引导类加载器主要负责加载java的核心类库,无法加载自定义类的。
        ClassLoader classLoader2 = classLoader1.getParent();
        System.out.println(classLoader2);

        ClassLoader classLoader3 = String.class.getClassLoader();
        System.out.println(classLoader3);

    }

6. 创建运行时类的对象

newInstance()——调用此方法,创建对应的运行时类的对象。内部调用了运行时类的空参的构造器。

要求:
1.运行时类必须提供空参的构造器
2.空参的构造器的访问权限得够。通常,设置为public。

解释——在javabean中要求提供一个public的空参构造器得的原因:

  1. 便于通过反射,创建运行时类的对象
  2. 便于子类继承此运行时类时,默认调用super()时,保证父类有此构造器
//体会反射的动态性
public class NewInstance {
	@Test
	public void test01() throws InstantiationException, IllegalAccessException{
		Class<Person> clazz = Person.class;
		Person obj = clazz.newInstance();
		
		System.out.println(obj);
	}
	
	@Test
	public void test02() throws ClassNotFoundException, InstantiationException, IllegalAccessException{
		
		for(int j = 0;j<50;j++){
			int num = new Random().nextInt(3);
			String classPath = "";
			switch (num) {
			case 0:
                classPath = "java.util.Date";
                break;
            case 1:
            	classPath = "java.lang.Object";
           
                break;
			case 2:
				classPath = "com.guigu.java.reflection.Person";
				break;
			}
			

			Object obj = getInstance(classPath);
			System.out.println(obj);
		}
	}
	
	public Object getInstance(String classPath) throws ClassNotFoundException, InstantiationException, IllegalAccessException{
		Class clazz = Class.forName(classPath);
		return clazz.newInstance();
	}
}

7. 获取运行时类的完整结构(了解)

通过反射获取运行时类的完整结构

  • Field
  • Method
  • Constructor
  • Superclass
  • Interface
  • Annotation

8. 调用运行时类的指定结构

①操作运行时类中的指定的属性

/*
    如何操作运行时类中的指定的属性 -- 需要掌握
     */
    @Test
    public void testField1() throws Exception {
        Class clazz = Person.class;

        //创建运行时类的对象
        Person p = (Person) clazz.newInstance();

        //1. getDeclaredField(String fieldName):获取运行时类中指定变量名的属性
        Field name = clazz.getDeclaredField("name");

        //2.保证当前属性是可访问的
        name.setAccessible(true);
        //3.获取、设置指定对象的此属性值
        name.set(p,"Tom");

        System.out.println(name.get(p));
    }

②操作运行时类中的指定的方法

/*
    如何操作运行时类中的指定的方法 -- 需要掌握
     */
    @Test
    public void testMethod() throws Exception {

        Class clazz = Person.class;

        //创建运行时类的对象
        Person p = (Person) clazz.newInstance();

        /*
        1.获取指定的某个方法
        getDeclaredMethod():参数1 :指明获取的方法的名称  参数2:指明获取的方法的形参列表
         */
        Method show = clazz.getDeclaredMethod("show", String.class);
        //2.保证当前方法是可访问的
        show.setAccessible(true);

        /*
        3. 调用方法的invoke():参数1:方法的调用者  参数2:给方法形参赋值的实参
        invoke()的返回值即为对应类中调用的方法的返回值。
         */
        Object returnValue = show.invoke(p,"CHN"); //String nation = p.show("CHN");
        System.out.println(returnValue);

        System.out.println("*************如何调用静态方法*****************");

        // private static void showDesc()

        Method showDesc = clazz.getDeclaredMethod("showDesc");
        showDesc.setAccessible(true);
        //如果调用的运行时类中的方法没有返回值,则此invoke()返回null
//        Object returnVal = showDesc.invoke(null);
        Object returnVal = showDesc.invoke(Person.class);
        System.out.println(returnVal);//null

    }

9. 反射的应用:动态代理

  • 代理设计模式的原理:
    使用一个代理将对象包装起来, 然后用该代理对象取代原始对象。任何对原 始对象的调用都要通过代理。代理对象决定是否以及何时将方法调用转到原 始对象上。
  • 静态代理的特征是代理类和目标对象的类都是在编译期间确定下来,不利于程序的扩展。同时,每一个代理类只能为一个接口服务,这样一来程序开发中必然产生过多的代理。最好可以通过一个代理类完成全部的代理功能。

要想实现动态代理,需要解决的问题?
问题一:如何根据加载到内存中的被代理类,动态的创建一个代理类及其对象。
问题二:当通过代理类的对象调用方法a时,如何动态的去调用被代理类中的同名方法a。

import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;

/**
 *
 * 动态代理的举例
 */
interface Human{

    String getBelief();

    void eat(String food);

}
//被代理类
class SuperMan implements Human{
    @Override
    public String getBelief() {
        return "I believe I can fly!";
    }

    @Override
    public void eat(String food) {
        System.out.println("我喜欢吃" + food);
    }
}

class HumanUtil{

    public void method1(){
        System.out.println("============通用方法一============");

    }

    public void method2(){
        System.out.println("==========通用方法二==============");
    }

}
/*
要想实现动态代理,需要解决的问题?
问题一:如何根据加载到内存中的被代理类,动态的创建一个代理类及其对象。
问题二:当通过代理类的对象调用方法a时,如何动态的去调用被代理类中的同名方法a。
 */
class ProxyFactory{
    //调用此方法,返回一个代理类的对象。解决问题一
    public static Object getProxyInstance(Object obj){//obj:被代理类的对象
        MyInvocationHandler handler = new MyInvocationHandler();

        handler.bind(obj);

        return Proxy.newProxyInstance(obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),handler);
    }

}

class MyInvocationHandler implements InvocationHandler{

    private Object obj;//需要使用被代理类的对象进行赋值

    public void bind(Object obj){
        this.obj = obj;
    }

    //当我们通过代理类的对象,调用方法a时,就会自动的调用如下的方法:invoke()
    //将被代理类要执行的方法a的功能就声明在invoke()中
    @Override
    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

        HumanUtil util = new HumanUtil();
        util.method1();

        //method:即为代理类对象调用的方法,此方法也就作为了被代理类对象要调用的方法
        //obj:被代理类的对象
        Object returnValue = method.invoke(obj,args);

        util.method2();

        //上述方法的返回值就作为当前类中的invoke()的返回值。
        return returnValue;

    }
}

public class ProxyTest {

    public static void main(String[] args) {
        SuperMan superMan = new SuperMan();
        //proxyInstance:代理类的对象
        Human proxyInstance = (Human) ProxyFactory.getProxyInstance(superMan);
        //当通过代理类对象调用方法时,会自动的调用被代理类中同名的方法
        String belief = proxyInstance.getBelief();
        System.out.println(belief);
        proxyInstance.eat("四川麻辣烫");

        NikeClothFactory nikeClothFactory = new NikeClothFactory();
        ClothFactory proxyClothFactory = (ClothFactory) ProxyFactory.getProxyInstance(nikeClothFactory);
        proxyClothFactory.produceCloth();

    }
}
;