加州伯克利大学的 AI 大佬们又搞事情了!这次他们祭出了一个名为 KVQuant 的大杀器,专治LLM内存焦虑症!😎
paper:https://arxiv.org/pdf/2401.18079
分析表明,对于较小的批处理规模,LLM推理过程的主要瓶颈在于内存带宽。随着计算速度和内存速度之间的差距不断扩大,这个问题只会越来越严重。而对于长序列长度,内存瓶颈主要来自于缓存键(Key)和值(Value)激活的内存需求。为了实现高效的长序列长度推理,压缩键值缓存至关重要
为了让LLM能处理更长、更复杂的任务,比如长篇小说总结、代码分析什么的,上下文窗口长度必须得加大!可是,内存不够怎么办?😰
别慌!加州伯克利出品,必属精品!KVQuant 就是一种专门针对LLM键值缓存(Key-Value Cache)的量化方法。它采用了几个超级厉害的技术,把内存占用量直接砍到骨折,同时还能保证模型精度几乎没有损失!🤯
KVQuant的秘密武器:
Per-Channel Key Quantization: 这个技术专门对付那些喜欢搞事情的异常值通道,让它们乖乖听话,别再影响其他通道的量化效果
Pre-RoPE Key Quantization: RoPE(旋转位置编码)这玩意儿虽然厉害,但会把不同通道的值混在一起,给量化增加难度。这个技术巧妙地绕过了RoPE,让量化变得更轻松
nuqX:灵敏度加权的非均匀量化: 这个技术更灵活,更精准,利用校准数据离线推导出每层的非均匀数据类型,并根据每个通道或每个token进行缩放,以准确表示Key和Value分布,让量化标度点放置恰到好处,就像一位经验丰富的调酒师,精准调配出最完美的鸡尾酒!🍸
Per-Vector Dense-and-Sparse Quantization: 这个技术针对每个向量单独使用不同的异常值阈值,而不是对每一层使用单一的异常值阈值,从而更有效地识别和压缩异常值,并用稀疏表示存储它们,就像把房间里的杂物整理到收纳盒里,让空间变得更整洁,也更有效率!📦
KVQuant的优势:
精度高到离谱: 在Wikitext-2和C4数据集上,用3比特量化,所有LLM(LLaMA, Llama-2, Llama-3, and Mistral)模型的困惑度(Perplexity:预测能力,准确率)下降都小于0.1,优于现有的方法!💪
速度快到飞起: KVQuant的自定义CUDA内核让LLaMA-7B模型的矩阵向量乘法速度提升了1.7倍,简直是飞一般的感觉!⚡️
省内存省到极致: KVQuant直接把键值缓存压缩了4.8倍,让LLaMA-7B模型在单张A100-80GB GPU上就能跑100万长度的上下文,8张GPU甚至能跑1000万!🤑
此外,研究人员还进行了一些额外的分析和实验:
长上下文长度评估: 使用LLaMA-2-7B-32K模型和Llama-2-70B-32K LongLoRA模型,评估了KVQuant在更长上下文长度下的性能。结果表明,即使在更长的上下文长度下,KVQuant也能保持较高的精度和检索性能
联合权重和KV缓存量化: 将KVQuant与现有的权重量化方法结合使用,发现即使权重也被量化到较低精度,KVQuant仍然能够保持较低的困惑度下降,证明了KVQuant与现有的权重量化方法的兼容性
性能分析和内存节省: 通过对KVQuant的内核进行基准测试,发现它能够在不同的序列长度下实现比基线fp16矩阵向量乘法更快的速度
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。