Bootstrap

ssd loss详解_ssd损失函数,Linux运维高级工程师系列学习路线介绍

 best_truth_overlap.index_fill_(0, best_prior_idx, 2) #确保gt与anchor最大的留下,并强制交并比为2
for j in range(best_prior_idx.size(0)):
        best_truth_idx[best_prior_idx[j]] = j  #对应anchor强制赋值对应的gt

意义就在于确保gt分配某个anchor,并且使得交并比最大为2。同时best_truth_idx强制赋值对应的gt。
总结下match这个函数功能就是把truth绑定到anchor上,相交的truth与anchor绑定,填充loc_t,conf_t传出。

下面给出整个ssd loss计算部分:
multibox_loss.py

class MultiBoxLoss(nn.Module):
    """SSD Weighted Loss Function
    Compute Targets:
        1) Produce Confidence Target Indices by matching  ground truth boxes
           with (default) 'priorboxes' that have jaccard index > threshold parameter
           (default threshold: 0.5).
        2) Produce localization target by 'encoding' variance into offsets of ground
           truth boxes and their matched  'priorboxes'.
        3) Hard negative mining to filter the excessive number of negative examples
           that comes with using a large number of default bounding boxes.
           (default negative:positive ratio 3:1)
    Objective Loss:
        L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
        Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
        weighted by α which is set to 1 by cross val.
        Args:
            c: class confidences,
            l: predicted boxes,
            g: ground truth boxes
            N: number of matched default boxes
        See: https://arxiv.org/pdf/1512.02325.pdf for more details.
    """

    def __init__(self, num_classes, overlap_thresh, prior_for_matching,
                 bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
                 use_gpu=True):
        super(MultiBoxLoss, self).__init__()
        self.use_gpu = use_gpu
        self.num_classes = num_classes
        self.threshold = overlap_thresh
        self.background_label = bkg_label
        self.encode_target = encode_target
        self.use_prior_for_matching = prior_for_matching
        self.do_neg_mining = neg_mining
        self.negpos_ratio = neg_pos
        self.neg_overlap =
;