Bootstrap

神经网络代码实现

目录

神经网络整体框架

核心计算步骤

参数初始化

 矩阵拉伸与还原

前向传播

损失函数定义

反向传播

全部迭代更新完成

数字识别实战

神经网络整体框架

核心计算步骤

参数初始化

# 定义初始化函数   normalize_data是否需要标准化
    def __init__(self,data,labels,layers,normalize_data=False):
        # 数据处理
        data_procesed = prepare_for_training(data,normalize_data = normalize_data)
        # 获取当前处理好的数据
        self.data = data_procesed
        self.labels = labels
        # 定义神经网络层数
        self.layers = layers #784(28*28*1)| 像素点 25(隐层神经元)| 10(十分类任务)
        self.normalize_data = normalize_data
        # 初始化权重参数
        self.thetas = MultilayerPerceptron.thetas_init(layers)

    @staticmethod
    def thetas_init(layers):
        # 层的个数
        num_layers = len(layers)
        # 构建多组权重参数
        thetas = {}
        # 会执行两次,得到两组参数矩阵:25*785 , 10*26
        for layer_index in range(num_layers - 1):
            # 输入
            in_count = layers[layer_index] #784
            # 输出
            out_count = layers[layer_index+1]
            # 构建矩阵并初始化操作 随机进行初始化操作,值尽量小一点
            thetas[layer_index] = np.random.rand(out_count,in_count+1)*0.05 # WX in_count+1:偏置项考虑进去,偏置项个数跟输出的结果一致
            return thetas

 矩阵拉伸与还原

 
# 将25*785矩阵拉长1*19625
    @staticmethod
    def thetas_unroll(thetas):
        num_theta_layers = len(thetas) #25*785 , 10*26;num_theta_layers长度为2
        unrolled_theta = np.array([])
        for theta_layer_index in range(num_theta_layers):
            # thetas[theta_layer_index].flatten()矩阵拉长
            # np.hstack((unrolled_theta, thetas[theta_layer_index].flatten())) 数组拼接 将25*785 , 10*26两个矩阵拼接成一个 1*x的矩阵
            unrolled_theta = np.hstack((unrolled_theta, thetas[theta_layer_index].flatten()))
        return unrolled_theta
# 矩阵还原
    """
    将展开的`unrolled_thetas`重新组织成一个字典`thetas`,其中每个键值对表示一个层的权重阵。
    函数的输入参数包括展开的参数`unrolled_thetas`和神经网络的层结构`layers`。
    具体来说,函数首先获取层的数量`num_layers`,然后创建一个空字典`thetas`用于存储权重矩阵。
    接下来,函数通过循环遍历每一层(除了最后一层),并根据层的输入和输出节点数计算权重矩阵的大小。
    在循环中,函数首先计算当前层权重矩阵的宽度`thetas_width`和高度`thetas_height`,
    然后计算权重矩阵的总元素个数`thetas_volume`。
    接着,函数根据展开参数的索引范围提取对应层的展开权重,并通过`reshape`函数将展开权重重新组织成一个二维矩阵。
    最后,函数将该矩阵存储到字典`thetas`中,键为当前层的索引。
    循环结束后,函数返回字典`thetas`,其中包含了每一层的权重矩阵。
    """
    @staticmethod
    def thetas_roll(unrolled_thetas,layers):
        # 进行反变换,将行转换为矩阵
        num_layers = len(layers)
        # 包含第一层、第二层、第三层
        thetas = {}
        # 指定标识符当前变换到哪了
        unrolled_shift = 0
        # 构造想要的参数矩阵
        for layer_index in range(num_layers - 1):
            # 输入
            in_count = layers[layer_index]
            # 输出
            out_count = layers[layer_index + 1]
            # 构造矩阵
            thetas_width = in_count + 1
            thetas_height = out_count
            # 计算权重矩阵的总元素个数
            thetas_volume = thetas_width * thetas_height
            # 指定从矩阵中哪个位置取值
            start_index = unrolled_shift
            # 结束位置
            end_index = unrolled_shift + thetas_volume
            layer_theta_unrolled = unrolled_thetas[start_index:end_index]
            # 获得25*785和10*26两个矩阵
            thetas[layer_index] = layer_theta_unrolled.reshape((thetas_height, thetas_width))
            # 更新
            unrolled_shift = unrolled_shift + thetas_volume
        return thetas

前向传播

# 前向传播函数
    @staticmethod
    def feedforward_propagation(data,thetas,layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数
        num_examples = data.shape[0]
        # 定义输入层
        in_layer_activation = data
        # 逐层计算
        for layer_index in range(num_layers - 1):
            theta = thetas[layer_index]
            # 隐藏层得到的结果
            out_layer_activation = sigmoid(np.dot(in_layer_activation, theta.T))
            # 正常计算完之后是num_examples*25,但是要考虑偏置项 变成num_examples*26
            out_layer_activation = np.hstack((np.ones((num_examples, 1)), out_layer_activation))
            in_layer_activation = out_layer_activation
        # 返回输出层结果,结果中不要偏置项了
        return in_layer_activation[:, 1:]

损失函数定义

# 损失函数定义
    @staticmethod
    def cost_function(data,labels,thetas,layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数
        num_examples = data.shape[0]
        # 分类个数
        num_labels = layers[-1]
        # 前向传播走一次
        predictions = MultilayerPerceptron.feedforward_propagation(data, thetas, layers)
        # 制作标签,每一个样本的标签都得是one-hot
        bitwise_labels = np.zeros((num_examples, num_labels))
        for example_index in range(num_examples):
            # 将对应的位置改为 1
            bitwise_labels[example_index][labels[example_index][0]] = 1
        # 计算损失
        bit_set_cost = np.sum(np.log(predictions[bitwise_labels == 1]))
        bit_not_set_cost = np.sum(np.log(1 - predictions[bitwise_labels == 0]))
        cost = (-1 / num_examples) * (bit_set_cost + bit_not_set_cost)
        return cost

反向传播

# 反向传播函数
    @staticmethod
    def back_propagation(data, labels, thetas, layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数、特征个数
        (num_examples, num_features) = data.shape
        # 输出结果
        num_label_types = layers[-1]
        # 输出层跟结果之间的差异
        deltas = {}
        # 初始化操作 逐层定义当前的值
        for layer_index in range(num_layers - 1):
            in_count = layers[layer_index]
            out_count = layers[layer_index + 1]
            # 构建矩阵
            deltas[layer_index] = np.zeros((out_count, in_count + 1))  # 得到两个矩阵25*785 10*26
        # 遍历输入层每个样本
        for example_index in range(num_examples):
            # 得到每层的输出结果
            layers_inputs = {}
            layers_activations = {}
            # 第0层输入转换为向量个数 输入层结果
            layers_activation = data[example_index, :].reshape((num_features, 1))  # 785*1
            layers_activations[0] = layers_activation
            # 逐层计算
            for layer_index in range(num_layers - 1):
                layer_theta = thetas[layer_index]  # 得到当前权重参数值 25*785   10*26
                layer_input = np.dot(layer_theta, layers_activation)  # 第一次得到25*1 第二次10*1 第一层输出等于第二层输入
                layers_activation = np.vstack((np.array([[1]]), sigmoid(layer_input)))
                layers_inputs[layer_index + 1] = layer_input  # 后一层计算结果
                layers_activations[layer_index + 1] = layers_activation  # 后一层经过激活函数后的结果
            output_layer_activation = layers_activation[1:, :] #去除偏置参数

            delta = {}
            # 标签处理
            bitwise_label = np.zeros((num_label_types, 1))
            bitwise_label[labels[example_index][0]] = 1
            # 计算输出层和真实值之间的差异
            delta[num_layers - 1] = output_layer_activation - bitwise_label

            # 遍历循环 L L-1 L-2 ...2
            for layer_index in range(num_layers - 2, 0, -1):
                layer_theta = thetas[layer_index]
                next_delta = delta[layer_index + 1]
                layer_input = layers_inputs[layer_index]
                layer_input = np.vstack((np.array((1)), layer_input))
                # 按照公式进行计算
                delta[layer_index] = np.dot(layer_theta.T, next_delta) * sigmoid_gradient(layer_input)
                # 过滤掉偏置参数
                delta[layer_index] = delta[layer_index][1:, :]
            # 梯度值计算
            for layer_index in range(num_layers - 1):
                layer_delta = np.dot(delta[layer_index + 1], layers_activations[layer_index].T)
                deltas[layer_index] = deltas[layer_index] + layer_delta  # 第一次25*785  第二次10*26

        for layer_index in range(num_layers - 1):
            deltas[layer_index] = deltas[layer_index] * (1 / num_examples)

        return deltas

全部迭代更新完成

import numpy as np
from utils.features import prepare_for_training
from utils.hypothesis import sigmoid,sigmoid_gradient

class MultilayerPerceptron:
    # 定义初始化函数   normalize_data是否需要标准化
    def __init__(self,data,labels,layers,normalize_data=False):
        # 数据处理
        data_procesed = prepare_for_training(data,normalize_data = normalize_data)
        # 获取当前处理好的数据
        self.data = data_procesed
        self.labels = labels
        # 定义神经网络层数
        self.layers = layers #784(28*28*1)| 像素点 25(隐层神经元)| 10(十分类任务)
        self.normalize_data = normalize_data
        # 初始化权重参数
        self.thetas = MultilayerPerceptron.thetas_init(layers)

    @staticmethod
    def thetas_init(layers):
        # 层的个数
        num_layers = len(layers)
        # 构建多组权重参数
        thetas = {}
        # 会执行两次,得到两组参数矩阵:25*785 , 10*26
        for layer_index in range(num_layers - 1):
            # 输入
            in_count = layers[layer_index] #784
            # 输出
            out_count = layers[layer_index+1]
            # 构建矩阵并初始化操作 随机进行初始化操作,值尽量小一点
            thetas[layer_index] = np.random.rand(out_count,in_count+1)*0.05 # WX in_count+1:偏置项考虑进去,偏置项个数跟输出的结果一致
            return thetas

    # 将25*785矩阵拉长1*19625
    @staticmethod
    def thetas_unroll(thetas):
        num_theta_layers = len(thetas) #25*785 , 10*26;num_theta_layers长度为2
        unrolled_theta = np.array([])
        for theta_layer_index in range(num_theta_layers):
            # thetas[theta_layer_index].flatten()矩阵拉长
            # np.hstack((unrolled_theta, thetas[theta_layer_index].flatten())) 数组拼接 将25*785 , 10*26两个矩阵拼接成一个 1*x的矩阵
            unrolled_theta = np.hstack((unrolled_theta, thetas[theta_layer_index].flatten()))
        return unrolled_theta

    # 矩阵还原
    """
    将展开的`unrolled_thetas`重新组织成一个字典`thetas`,其中每个键值对表示一个层的权重阵。
    函数的输入参数包括展开的参数`unrolled_thetas`和神经网络的层结构`layers`。
    具体来说,函数首先获取层的数量`num_layers`,然后创建一个空字典`thetas`用于存储权重矩阵。
    接下来,函数通过循环遍历每一层(除了最后一层),并根据层的输入和输出节点数计算权重矩阵的大小。
    在循环中,函数首先计算当前层权重矩阵的宽度`thetas_width`和高度`thetas_height`,
    然后计算权重矩阵的总元素个数`thetas_volume`。
    接着,函数根据展开参数的索引范围提取对应层的展开权重,并通过`reshape`函数将展开权重重新组织成一个二维矩阵。
    最后,函数将该矩阵存储到字典`thetas`中,键为当前层的索引。
    循环结束后,函数返回字典`thetas`,其中包含了每一层的权重矩阵。
    """
    @staticmethod
    def thetas_roll(unrolled_thetas,layers):
        # 进行反变换,将行转换为矩阵
        num_layers = len(layers)
        # 包含第一层、第二层、第三层
        thetas = {}
        # 指定标识符当前变换到哪了
        unrolled_shift = 0
        # 构造想要的参数矩阵
        for layer_index in range(num_layers - 1):
            # 输入
            in_count = layers[layer_index]
            # 输出
            out_count = layers[layer_index + 1]
            # 构造矩阵
            thetas_width = in_count + 1
            thetas_height = out_count
            # 计算权重矩阵的总元素个数
            thetas_volume = thetas_width * thetas_height
            # 指定从矩阵中哪个位置取值
            start_index = unrolled_shift
            # 结束位置
            end_index = unrolled_shift + thetas_volume
            layer_theta_unrolled = unrolled_thetas[start_index:end_index]
            # 获得25*785和10*26两个矩阵
            thetas[layer_index] = layer_theta_unrolled.reshape((thetas_height, thetas_width))
            # 更新
            unrolled_shift = unrolled_shift + thetas_volume
        return thetas

    # 损失函数定义
    @staticmethod
    def cost_function(data,labels,thetas,layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数
        num_examples = data.shape[0]
        # 分类个数
        num_labels = layers[-1]
        # 前向传播走一次
        predictions = MultilayerPerceptron.feedforward_propagation(data, thetas, layers)
        # 制作标签,每一个样本的标签都得是one-hot
        bitwise_labels = np.zeros((num_examples, num_labels))
        for example_index in range(num_examples):
            # 将对应的位置改为 1
            bitwise_labels[example_index][labels[example_index][0]] = 1
        # 计算损失
        bit_set_cost = np.sum(np.log(predictions[bitwise_labels == 1]))
        bit_not_set_cost = np.sum(np.log(1 - predictions[bitwise_labels == 0]))
        cost = (-1 / num_examples) * (bit_set_cost + bit_not_set_cost)
        return cost

    # 梯度值计算函数
    @staticmethod
    def gradient_step(data, labels, optimized_theta, layers):
        # 将theta值还原成矩阵格式
        theta = MultilayerPerceptron.thetas_roll(optimized_theta, layers)
        # 反向传播
        thetas_rolled_gradients = MultilayerPerceptron.back_propagation(data, labels, theta, layers)
        # 将矩阵拉伸方便参数更新
        thetas_unrolled_gradients = MultilayerPerceptron.thetas_unroll(thetas_rolled_gradients)
        # 返回梯度值
        return thetas_unrolled_gradients

    # 梯度下降模块
    @staticmethod
    def gradient_descent(data,labels,unrolled_theta,layers,max_iterations,alpha):
        # 最终得到的theta值先使用初始theta
        optimized_theta = unrolled_theta
        # 每次迭代都会得到当前的损失值,记录到 cost_history数组中
        cost_history = []
        # 进行迭代
        for _ in range(max_iterations):
            # 1.计算当前损失值  thetas_roll()函数将拉长后的向量还原成矩阵
            cost = MultilayerPerceptron.cost_function(data, labels,
                                                      MultilayerPerceptron.thetas_roll(optimized_theta, layers), layers)
            # 记录当前损失
            cost_history.append(cost)
            # 2.根据损失值计算当前梯度值
            theta_gradient = MultilayerPerceptron.gradient_step(data, labels, optimized_theta, layers)
            # 3.更新梯度值,最终得到的结果是优化完的theta
            optimized_theta = optimized_theta - alpha * theta_gradient
        return optimized_theta, cost_history

    # 前向传播函数
    @staticmethod
    def feedforward_propagation(data,thetas,layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数
        num_examples = data.shape[0]
        # 定义输入层
        in_layer_activation = data
        # 逐层计算
        for layer_index in range(num_layers - 1):
            theta = thetas[layer_index]
            # 隐藏层得到的结果
            out_layer_activation = sigmoid(np.dot(in_layer_activation, theta.T))
            # 正常计算完之后是num_examples*25,但是要考虑偏置项 变成num_examples*26
            out_layer_activation = np.hstack((np.ones((num_examples, 1)), out_layer_activation))
            in_layer_activation = out_layer_activation
        # 返回输出层结果,结果中不要偏置项了
        return in_layer_activation[:, 1:]

    # 反向传播函数
    @staticmethod
    def back_propagation(data, labels, thetas, layers):
        # 获取层数
        num_layers = len(layers)
        # 样本个数、特征个数
        (num_examples, num_features) = data.shape
        # 输出结果
        num_label_types = layers[-1]
        # 输出层跟结果之间的差异
        deltas = {}
        # 初始化操作 逐层定义当前的值
        for layer_index in range(num_layers - 1):
            in_count = layers[layer_index]
            out_count = layers[layer_index + 1]
            # 构建矩阵
            deltas[layer_index] = np.zeros((out_count, in_count + 1))  # 得到两个矩阵25*785 10*26
        # 遍历输入层每个样本
        for example_index in range(num_examples):
            # 得到每层的输出结果
            layers_inputs = {}
            layers_activations = {}
            # 第0层输入转换为向量个数 输入层结果
            layers_activation = data[example_index, :].reshape((num_features, 1))  # 785*1
            layers_activations[0] = layers_activation
            # 逐层计算
            for layer_index in range(num_layers - 1):
                layer_theta = thetas[layer_index]  # 得到当前权重参数值 25*785   10*26
                layer_input = np.dot(layer_theta, layers_activation)  # 第一次得到25*1 第二次10*1 第一层输出等于第二层输入
                layers_activation = np.vstack((np.array([[1]]), sigmoid(layer_input)))
                layers_inputs[layer_index + 1] = layer_input  # 后一层计算结果
                layers_activations[layer_index + 1] = layers_activation  # 后一层经过激活函数后的结果
            output_layer_activation = layers_activation[1:, :] #去除偏置参数

            delta = {}
            # 标签处理
            bitwise_label = np.zeros((num_label_types, 1))
            bitwise_label[labels[example_index][0]] = 1
            # 计算输出层和真实值之间的差异
            delta[num_layers - 1] = output_layer_activation - bitwise_label

            # 遍历循环 L L-1 L-2 ...2
            for layer_index in range(num_layers - 2, 0, -1):
                layer_theta = thetas[layer_index]
                next_delta = delta[layer_index + 1]
                layer_input = layers_inputs[layer_index]
                layer_input = np.vstack((np.array((1)), layer_input))
                # 按照公式进行计算
                delta[layer_index] = np.dot(layer_theta.T, next_delta) * sigmoid_gradient(layer_input)
                # 过滤掉偏置参数
                delta[layer_index] = delta[layer_index][1:, :]
            # 梯度值计算
            for layer_index in range(num_layers - 1):
                layer_delta = np.dot(delta[layer_index + 1], layers_activations[layer_index].T)
                deltas[layer_index] = deltas[layer_index] + layer_delta  # 第一次25*785  第二次10*26

        for layer_index in range(num_layers - 1):
            deltas[layer_index] = deltas[layer_index] * (1 / num_examples)

        return deltas


    # 定义训练模块      定义最大迭代次数    定义学习率
    def train(self,max_iterations=1000,alpha=0.1):
        """第一步首先需要做优化,计算损失函数然后根据损失函数计算梯度值,
        然后更新梯度值调整权重参数,前向传播加反向传播,整体一次迭代"""
        # 将矩阵转化为向量方便参数更新,将25*785矩阵拉长1*19625
        unrolled_theta = MultilayerPerceptron.thetas_unroll(self.thetas)
        # 梯度下降模块
        (optimized_theta, cost_history) = MultilayerPerceptron.gradient_descent(self.data, self.labels, unrolled_theta,
                                                                                self.layers, max_iterations, alpha)
        # 参数更新完成之后需要将拉长后的还原,进行前向传播
        self.thetas = MultilayerPerceptron.thetas_roll(optimized_theta, self.layers)
        return self.thetas, cost_history

数字识别实战

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mping 
import math

from multilayer_perceptron import MultilayerPerceptron


data = pd.read_csv('../data/mnist-demo.csv')
numbers_to_display = 25
num_cells = math.ceil(math.sqrt(numbers_to_display))
plt.figure(figsize=(10,10))
for plot_index in range(numbers_to_display):
    digit = data[plot_index:plot_index+1].values
    digit_label = digit[0][0]
    digit_pixels = digit[0][1:]
    image_size = int(math.sqrt(digit_pixels.shape[0]))
    frame = digit_pixels.reshape((image_size,image_size))
    plt.subplot(num_cells,num_cells,plot_index+1)
    plt.imshow(frame,cmap='Greys')
    plt.title(digit_label)
plt.subplots_adjust(wspace=0.5,hspace=0.5)
plt.show()

train_data = data.sample(frac = 0.8)
test_data = data.drop(train_data.index)

train_data = train_data.values
test_data = test_data.values

num_training_examples = 1700

x_train = train_data[:num_training_examples,1:]
y_train = train_data[:num_training_examples,[0]]

x_test = test_data[:,1:]
y_test = test_data[:,[0]]


layers=[784,25,10]

normalize_data = True
max_iterations = 300
alpha = 0.1


multilayer_perceptron = MultilayerPerceptron(x_train,y_train,layers,normalize_data)
(thetas,costs) = multilayer_perceptron.train(max_iterations,alpha)
plt.plot(range(len(costs)),costs)
plt.xlabel('Grident steps')
plt.xlabel('costs')
plt.show()


y_train_predictions = multilayer_perceptron.predict(x_train)
y_test_predictions = multilayer_perceptron.predict(x_test)

train_p = np.sum(y_train_predictions == y_train)/y_train.shape[0] * 100
test_p = np.sum(y_test_predictions == y_test)/y_test.shape[0] * 100
print ('训练集准确率:',train_p)
print ('测试集准确率:',test_p)

numbers_to_display = 64

num_cells = math.ceil(math.sqrt(numbers_to_display))

plt.figure(figsize=(15, 15))

for plot_index in range(numbers_to_display):
    digit_label = y_test[plot_index, 0]
    digit_pixels = x_test[plot_index, :]

    predicted_label = y_test_predictions[plot_index][0]

    image_size = int(math.sqrt(digit_pixels.shape[0]))

    frame = digit_pixels.reshape((image_size, image_size))

    color_map = 'Greens' if predicted_label == digit_label else 'Reds'
    plt.subplot(num_cells, num_cells, plot_index + 1)
    plt.imshow(frame, cmap=color_map)
    plt.title(predicted_label)
    plt.tick_params(axis='both', which='both', bottom=False, left=False, labelbottom=False, labelleft=False)

plt.subplots_adjust(hspace=0.5, wspace=0.5)
plt.show()

;