-
假设条件:
- 如果两张图片是同一场景或内容(例如科研中的实验图片),那么它们的直方图应该有一定的相似性。
- 曝光度调整通常会导致直方图的整体平移或缩放,而不是完全改变分布形状。
-
改进方法:
- 直方图平移检测:检查直方图是否整体平移(例如曝光度增加或减少)。
- 直方图形状相似性:使用更高级的直方图比较方法(如巴氏距离或卡方距离)来评估形状相似性。
- 局部特征对比:如果可能,提取图片的局部特征(如边缘、纹理)进行比较,确保图片内容一致。
改进代码:
以下代码结合了直方图平移检测和形状相似性分析:
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 加载原始图片和处理后的图片
original_image = cv2.imread('original_image.jpg', cv2.IMREAD_GRAYSCALE)
processed_image = cv2.imread('processed_image.jpg', cv2.IMREAD_GRAYSCALE)
# 计算直方图
original_hist = cv2.calcHist([original_image], [0], None, [256], [0, 256])
processed_hist = cv2.calcHist([processed_image], [0], None, [256], [0, 256])
# 归一化直方图
original_hist = original_hist / original_image.size
processed_hist = processed_hist / processed_image.size
# 绘制直方图
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(original_hist, color='black')
plt.title('原始图片直方图')
plt.xlabel('像素值')
plt.ylabel('频率')
plt.subplot(1, 2, 2)
plt.plot(processed_hist, color='black')
plt.title('处理后图片直方图')
plt.xlabel('像素值')
plt.ylabel('频率')
plt.show()
# 比较直方图形状相似性(使用巴氏距离)
def compare_histograms(hist1, hist2):
# 巴氏距离(值越小,直方图越相似)
return cv2.compareHist(hist1, hist2, cv2.HISTCMP_BHATTACHARYYA)
# 检测直方图是否平移(曝光度调整)
def detect_exposure_shift(hist1, hist2):
# 计算直方图的均值
mean1 = np.sum(np.arange(256) * hist1.flatten())
mean2 = np.sum(np.arange(256) * hist2.flatten())
shift = mean2 - mean1
return shift
# 计算直方图形状相似性
bhattacharyya_distance = compare_histograms(original_hist, processed_hist)
print(f"直方图巴氏距离: {bhattacharyya_distance}")
# 检测直方图平移
exposure_shift = detect_exposure_shift(original_hist, processed_hist)
print(f"直方图平移量: {exposure_shift}")
# 判断是否存在曝光度调整
if bhattacharyya_distance < 0.2 and abs(exposure_shift) > 10: # 阈值可以根据实际情况调整
print("处理后的图片可能经过曝光度调整。")
else:
print("处理后的图片不太可能经过曝光度调整。")
代码改进点:
-
巴氏距离:
- 用于衡量直方图形状的相似性。值越小,说明直方图形状越相似。
- 如果两张图片的内容相同,但曝光度不同,巴氏距离应该较小。
-
直方图平移检测:
- 计算直方图的均值差异,判断是否存在整体平移。
- 如果平移量较大(例如大于10),则可能存在曝光度调整。
-
综合判断:
- 如果直方图形状相似(巴氏距离小)且存在明显平移(平移量大),则可以认为存在曝光度调整。
示例输出:
- 直方图巴氏距离: 0.15
- 直方图平移量: 25
- 结论: 处理后的图片可能经过曝光度调整。
注意事项:
-
阈值调整:
- 巴氏距离和平移量的阈值需要根据具体场景调整。
- 例如,巴氏距离的阈值可以设为0.2,平移量的阈值可以设为10。
-
图片内容一致性:
- 该方法假设两张图片的内容基本相同。如果内容完全不同,直方图比较将失效。
-
其他图像处理操作:
- 如果图片经过其他处理(如对比度调整、滤波等),可能需要更复杂的分析方法。
通过这种方法,可以更准确地检测图片是否经过曝光度调整,同时避免误判。