本文主要介绍tensorflow的自动训练的相关细节,并把自动训练和基础公式结合起来。如有不足,还请指教。
写这个的初衷:有些教程说的比较模糊,没体现出用意和特性或应用场景。
面向对象:稍微了解点代码,又因为有限的教程讲解比较模糊而一知半解的初学者。
(更多相关内容,比如相关优化算法的分解和手动实现,EMA、BatchNormalization等用法,底部都有链接。)
正文
tensorflow提供了多种optimizer,典型梯度下降GradientDescent和Adagrad、Momentum、Nestrov、Adam等变种。
典型的学习步骤是梯度下降GradientDescent,optimizer可以自动实现这一过程,通过指定loss来串联所有相关变量形成计算图,然后通过optimizer(learning_rate).minimize(loss)实现自动梯度下降。minimize()也是两步操作的合并,后边会分解。
计算图的概念:一个变量想要被训练到,前提他在计算图中,更直白的说,要在公式或者连锁公式中,如果一个变量和loss没有任何直接以及间接关系,那就不会被训练到。
train的过程其实就是修改计算图中的tf.Variable的过程,可以认为这些所有variable都是权重,为了简化,下面这个例子没引入placeholder和x,没有x和w的区分,但是变量prediction_to_train=3其实等价于:
prediction_to_train(y) = w*x,其中初始值w=3,隐藏的锁死的x=1(也就是一个固定的训练样本)。
这里loss定义的是平方差,label是1,所以训练过程就是x=1,y=1的数据,针对初始化w=3,训练w,把w变成1。
-
import tensorflow
as tf
-
-
#define variable and error
-
label = tf.constant(
1,dtype = tf.float32)
-
prediction_to_train = tf.Variable(
3,dtype=tf.float32)
-
-
#define losses and train
-
manual_compute_loss = tf.square(prediction_to_train - label)
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
train_step = optimizer.minimize(manual_compute_loss)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
100):
-
print(
'variable is ', sess.run(prediction_to_train),
' and the loss is ',sess.run(manual_compute_loss))
-
sess.run(train_step)
输出
-
variable
is
3.0 and the loss
is
4.0
-
variable
is
2.96 and the loss
is
3.8416002
-
variable
is
2.9208 and the loss
is
3.6894724
-
variable
is
2.882384 and the loss
is
3.5433698
-
variable
is
2.8447363 and the loss
is
3.403052
-
variable
is
2.8078415 and the loss
is
3.268291
-
-
。。。。。。。
-
。。。
-
variable
is
2.0062745 and the loss
is
1.0125883
-
variable
is
1.986149 and the loss
is
0.9724898
-
variable
is
1.966426 and the loss
is
0.9339792
-
-
。。。。
-
。。。
-
-
variable
is
1.0000029 and the loss
is
8.185452e-12
-
variable
is
1.0000029 and the loss
is
8.185452e-12
-
variable
is
1.0000029 and the loss
is
8.185452e-12
-
variable
is
1.0000029 and the loss
is
8.185452e-12
-
variable
is
1.0000029 and the loss
is
8.185452e-12
限定train的Variable的方法:
根据train是修改计算图中tf.Variable(默认是计算图中所有tf.Variable,可以通过var_list指定)的事实,可以使用tf.constant或者python变量的形式来规避常量被训练,这也是迁移学习要用到的技巧。
下边是一个正经的陈(train)一发的例子:
y=w1*x+w2*x+w3*x
因y=1,x=1
1=w1+w2+w3
又w3=4
-3=w1+w2
-
#demo2
-
#define variable and error
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32)
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.constant(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = tf.square(y_predict - label)
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
train_step = optimizer.minimize(make_up_loss)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
100):
-
w1_,w2_,w3_,loss_ = sess.run([w1,w2,w3,make_up_loss],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
sess.run(train_step,{x:
1})
因为w3是constant,成功避免了被陈(train)一发,只有w1和w2被train。
符合预期-3=w1+w2
-
variable
is w1:
-1.4999986 w2:
-1.4999986 w3:
4.0
and the loss
is
8.185452e-12
-
variable
is w1:
-1.4999986 w2:
-1.4999986 w3:
4.0
and the loss
is
8.185452e-12
-
variable
is w1:
-1.4999986 w2:
-1.4999986 w3:
4.0
and the loss
is
8.185452e-12
-
variable
is w1:
-1.4999986 w2:
-1.4999986 w3:
4.0
and the loss
is
8.185452e-12
下边是使用var_list限制只有w2被train的例子,只有w2被train,又因为那两个w初始化都是4,x=1,所以w2接近-7是正确答案。
-
#define variable and error
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32)
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.constant(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = tf.square(y_predict - label)
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
train_step = optimizer.minimize(make_up_loss,var_list = w2)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
500):
-
w1_,w2_,w3_,loss_ = sess.run([w1,w2,w3,make_up_loss],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
sess.run(train_step,{x:
1})
-
variable
is w1:
4.0 w2:
-6.99948 w3:
4.0
and the loss
is
2.7063857e-07
-
variable
is w1:
4.0 w2:
-6.9994903 w3:
4.0
and the loss
is
2.5983377e-07
-
variable
is w1:
4.0 w2:
-6.9995003 w3:
4.0
and the loss
is
2.4972542e-07
-
variable
is w1:
4.0 w2:
-6.9995103 w3:
4.0
and the loss
is
2.398176e-07
-
variable
is w1:
4.0 w2:
-6.9995203 w3:
4.0
and the loss
is
2.3011035e-07
-
variable
is w1:
4.0 w2:
-6.99953 w3:
4.0
and the loss
is
2.2105178e-07
-
variable
is w1:
4.0 w2:
-6.9995394 w3:
4.0
and the loss
is
2.1217511e-07
如果w1、w2、w3都是tf.constant呢?毫无疑问,,还,真友好~
一共两种情况:
var_list自动获取所有可训练变量,会报错告诉你找不到能train的variables:
ValueError: No variables to optimize.
用var_list指定一个constant,没有实现:
NotImplementedError: ('Trying to update a Tensor ', <tf.Tensor 'Const_1:0' shape=() dtype=float32>)
另一种获得var_list的方式——tf.getCollection
各种get_variable更实用一些,因为不一定方便通过python引用得到tensor。
-
#demo2.2 another way to collect var_list
-
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32)
-
with tf.name_scope(name=
'selected_variable_to_trian'):
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.constant(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = (y_predict - label)**
3
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
-
output_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=
'selected_variable_to_trian')
-
train_step = optimizer.minimize(make_up_loss,var_list = output_vars)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
3000):
-
w1_,w2_,w3_,loss_ = sess.run([w1,w2,w3,make_up_loss],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
sess.run(train_step,{x:
1})
-
variable is w
1:
4.
0 w
2: -
6.
988893 w
3:
4.
0 and the loss is
1.
3702081e-
06
-
variable is w
1:
4.
0 w
2: -
6.
988897 w
3:
4.
0 and the loss is
1.
3687968e-
06
-
variable is w
1:
4.
0 w
2: -
6.
9889007 w
3:
4.
0 and the loss is
1.
3673865e-
06
-
variable is w
1:
4.
0 w
2: -
6.
9889045 w
3:
4.
0 and the loss is
1.
3659771e-
06
-
variable is w
1:
4.
0 w
2: -
6.
9889083 w
3:
4.
0 and the loss is
1.
3645688e-
06
-
variable is w
1:
4.
0 w
2: -
6.
988912 w
3:
4.
0 and the loss is
1.
3631613e-
06
-
variable is w
1:
4.
0 w
2: -
6.
988916 w
3:
4.
0 and the loss is
1.
3617548e-
06
-
variable is w
1:
4.
0 w
2: -
6.
9889197 w
3:
4.
0 and the loss is
1.
3603493e-
06
TRAINABLE_VARIABLE=False
另一种限制variable被限制的方法,与上边的方法原理相似,都和tf.GraphKeys.TRAINABLE_VARIABLE有关,只不过前一个是从里边挑出指定scope,这个从变量定义时就决定了不往里插入这个变量。
不可训练和常量还是不同的,毕竟还能手动修改,比如滑动平均值的应用,不可训练像是专门针对optimizer的约定。
-
#demo2.4 another way to avoid variable be train
-
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32,trainable=
False)
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.constant(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = (y_predict - label)**
3
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
-
output_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
-
train_step = optimizer.minimize(make_up_loss,var_list = output_vars)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
3000):
-
w1_,w2_,w3_,loss_ = sess.run([w1,w2,w3,make_up_loss],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
sess.run(train_step,{x:
1})
获取所有trainable变量来train,也就等于不指定var_list直接train,是默认参数。
-
var_list: Optional list or tuple of `Variable` objects to
update
to
-
minimize
`loss`.
Defaults
to the
list
of
variables collected
in
-
the graph
under the
key
`GraphKeys.TRAINABLE_VARIABLES`.
-
#demo2.3 another way to avoid variable be train
-
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
#w1 = tf.Variable(4,dtype=tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32,trainable=
False)
-
with tf.name_scope(name=
'selected_variable_to_trian'):
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.constant(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = (y_predict - label)**
3
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
-
train_step = optimizer.minimize(make_up_loss)
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
3000):
-
w1_,w2_,w3_,loss_ = sess.run([w1,w2,w3,make_up_loss],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
sess.run(train_step,{x:
1})
实际结果同上,略。
minimize()操作分解
其实minimize()操作也只是一个compute_gradients()和apply_gradients()的组合操作.
compute_gradients()用来计算梯度,opt.apply_gradients()用来更新参数。通过多个optimizer可以指定多个具有不同学习率的学习过程,针对不同的var_list分别进行gradient的计算和参数更新,可以用来迁移学习或者处理一些深层网络梯度更新不匹配的问题,暂不赘述。
-
#demo2.4 combine of ompute_gradients() and apply_gradients()
-
-
label = tf.constant(
1,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w1 = tf.Variable(
4,dtype=tf.float32,trainable=
False)
-
w2 = tf.Variable(
4,dtype=tf.float32)
-
w3 = tf.Variable(
4,dtype=tf.float32)
-
-
y_predict = w1*x+w2*x+w3*x
-
-
#define losses and train
-
make_up_loss = (y_predict - label)**
3
-
optimizer = tf.train.GradientDescentOptimizer(
0.01)
-
-
w2_gradient = optimizer.compute_gradients(loss = make_up_loss, var_list = w2)
-
train_step = optimizer.apply_gradients(grads_and_vars = (w2_gradient))
-
-
init = tf.global_variables_initializer()
-
with tf.Session()
as sess:
-
sess.run(init)
-
for _
in range(
300):
-
w1_,w2_,w3_,loss_,w2_gradient_ = sess.run([w1,w2,w3,make_up_loss,w2_gradient],feed_dict={x:
1})
-
print(
'variable is w1:',w1_,
' w2:',w2_,
' w3:',w3_,
' and the loss is ',loss_)
-
print(
'gradient:',w2_gradient_)
-
sess.run(train_step,{x:
1})
具体的learning rate、step、计算公式和手动梯度下降实现:
在预测中,x是关于y的变量,但是在train中,w是L的变量,x是不可能变化的。所以,知道为什么weights叫Variable了吧(强行瞎解释一发)
下面用tensorflow接口手动实现梯度下降:
为了方便写公式,下边的代码改了变量的命名,采用loss、prediction、gradient、weight、y、x等首字母表示,η表示学习率,w0、w1、w2等表示第几次迭代时w的值,不是多个变量。
loss=(y-p)^2=(y-w*x)^2=(y^2-2*y*w*x+w^2*x^2)
dl/dw = 2*w*x^2-2*y*x
代入梯度下降公式w1=w0-η*dL/dw|w=w0
w1 = w0-η*dL/dw|w=w0
w2 = w1 - η*dL/dw|w=w1
w3 = w2 - η*dL/dw|w=w2
初始:y=3,x=1,w=2,l=1,dl/dw=-2,η=1
更新:w=4
更新:w=2
更新:w=4
所以,本例x=1,y=3,dl/dw巧合的等于2w-2y,也就是二倍的prediction和label的差距。learning rate=1会导致w围绕正确的值来回徘徊,完全不收敛,这样写主要是方便演示计算。改小learning rate 并增加循环次数就能收敛了。
-
#demo4:manual gradient descent in tensorflow
-
#y label
-
y = tf.constant(
3,dtype = tf.float32)
-
x = tf.placeholder(dtype = tf.float32)
-
w = tf.Variable(
2,dtype=tf.float32)
-
#prediction
-
p = w*x
-
-
#define losses
-
l = tf.square(p - y)
-
g = tf.gradients(l, w)
-
learning_rate = tf.constant(
1,dtype=tf.float32)
-
#learning_rate = tf.constant(0.11,dtype=tf.float32)
-
init = tf.global_variables_initializer()
-
-
#update
-
update = tf.assign(w, w - learning_rate * g[
0])
-
-
with tf.Session()
as sess:
-
sess.run(init)
-
print(sess.run([g,p,w], {x:
1}))
-
for _
in range(
5):
-
w_,g_,l_ = sess.run([w,g,l],feed_dict={x:
1})
-
print(
'variable is w:',w_,
' g is ',g_,
' and the loss is ',l_)
-
-
_ = sess.run(update,feed_dict={x:
1})
结果:
learning rate=1
-
[[
-2.0],
2.0,
2.0]
-
variable
is w:
2.0 g
is [
-2.0]
and the loss
is
1.0
-
variable
is w:
4.0 g
is [
2.0]
and the loss
is
1.0
-
variable
is w:
2.0 g
is [
-2.0]
and the loss
is
1.0
-
variable
is w:
4.0 g
is [
2.0]
and the loss
is
1.0
-
variable
is w:
2.0 g
is [
-2.0]
and the loss
is
1.0
效果类似下图
缩小learning rate
-
variable
is w:
2.9964619 g
is [
-0.007575512]
and the loss
is
1.4347095e-05
-
variable
is w:
2.996695 g
is [
-0.0070762634]
and the loss
is
1.2518376e-05
-
variable
is w:
2.996913 g
is [
-0.0066099167]
and the loss
is
1.0922749e-05
-
variable
is w:
2.9971166 g
is [
-0.0061740875]
and the loss
is
9.529839e-06
-
variable
is w:
2.9973066 g
is [
-0.0057668686]
and the loss
is
8.314193e-06
-
variable
is w:
2.9974842 g
is [
-0.0053868294]
and the loss
is
7.2544826e-06
-
variable
is w:
2.9976501 g
is [
-0.0050315857]
and the loss
is
6.3292136e-06
-
variable
is w:
2.997805 g
is [
-0.004699707]
and the loss
is
5.5218115e-06
-
variable
is w:
2.9979498 g
is [
-0.004389763]
and the loss
is
4.8175043e-06
-
variable
is w:
2.998085 g
is [
-0.0041003227]
and the loss
is
4.2031616e-06
-
variable
is w:
2.9982114 g
is [
-0.003829956]
and the loss
is
3.6671408e-06
-
variable
is w:
2.9983294 g
is [
-0.0035772324]
and the loss
is
3.1991478e-06
扩展:Momentum、Adagrad的自动和手动实现,这里嫌太长,分开了
补充实操经验:
实际工程经常会使用global_step变量,作为动态学习率、EMA和Batch_Normalization操作的依据,在对所有可训练数据训练时,尤其ema选中所有可训练变量时,容易对global_step产生影响(本来是每一步+1,偏偏被加了个惯性,加了衰减系数),所以global_step一定要设定trainable=False。并且EMA等操作谨慎选择训练目标。
关于EMA与trainable=False,其实没有严格关系,但是通常有一定关系,EMA默认可能是获得所有可训练变量,如果给global_step设定trainable=False,就避免了被传入EMA的var_list,这也算是一个“你也不知道为什么,只是走运没出事儿”的常见案例了!!!
同样道理,BatchNormalization的average_mean和average_variance都是要设定trainable=False,都是他们单独维护的。