Bootstrap

hunyuandit_pytorch AIGC 以文生图模型

HunyuanDiT

论文

Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

模型结构

模型基于transformer decoder结构,在DiT基础上重新设计了Time Embedding以及positional Embedding的添加方式,Text Prompt通过两个text encoder进行编码,其余与DiT一致。

算法原理

使用self-attention捕获图像内部的结构信息,使用cross attention对齐文本与图像。

环境配置

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310

docker run --shm-size 10g --network=host --name=hunyuan --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

pip install -r requirements.txt

pip install timm --no-deps

pip install flash_attn-2.0.4+das1.0+82379d7.abi0.dtk2404.torch2.1-cp310-cp310-manylinux2014_x86_64.whl  (开发者社区)

pip install bitsandbytes-0.42.0-py3-none-any.whl  (whl文件夹中)

Dockerfile(方法二)

docker build -t <IMAGE_NAME>:<TAG> .

docker run --shm-size 10g --network=host --name=hunyuan --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

pip install -r requirements.txt

pip install timm --no-deps

pip install flash_attn-2.0.4+das1.0+82379d7.abi0.dtk2404.torch2.1-cp310-cp310-manylinux2014_x86_64.whl  (开发者社区)

pip install bitsandbytes-0.42.0-py3-none-any.whl  (whl文件夹中)

Anaconda (方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

DTK驱动:dtk24.04
python:python3.10
torch: 2.1.0
torchvision: 0.16.0
onnx: 1.15.0
flash-attn: 2.0.4

Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应

2、其它非特殊库参照requirements.txt安装

pip install -r requirements.txt

pip install timm --no-deps

pip install bitsandbytes-0.42.0-py3-none-any.whl  (whl文件夹中)

数据集

推理

命令行

# Prompt Enhancement + Text-to-Image. Torch mode
python sample_t2i.py --prompt "千里冰封万里雪飘"

# Prompt Enhancement + Text-to-Image. Torch mode(在最新硬件上可用)
python sample_t2i.py --prompt "千里冰封万里雪飘" --infer-mode fa

# Only Text-to-Image. Torch mode
python sample_t2i.py --prompt "飞流直下三千尺疑是银河落九天" --no-enhance

# Generate an image with other image sizes.
python sample_t2i.py --prompt "飞流直下三千尺疑是银河落九天" --image-size 1280 768

# Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.
python sample_t2i.py --prompt "飞流直下三千尺疑是银河落九天"  --load-4bit

参数列表

ArgumentDefaultDescription
--promptNoneThe text prompt for image generation
--image-size1024 1024The size of the generated image
--seed42The random seed for generating images
--infer-steps100The number of steps for sampling
--negative-The negative prompt for image generation
--infer-modetorchThe inference mode (torch, fa)
--samplerddpmThe diffusion sampler (ddpm, ddim, or dpmms)
--no-enhanceFalseDisable the prompt enhancement model
--model-rootckptsThe root directory of the model checkpoints
--load-keyemaLoad the student model or EMA model (ema or module)
--load-4bitFasleLoad DialogGen model with 4bit quantization

webui(推荐)

# By default, we start a Chinese UI.
python app/hydit_app.py

# Using Flash Attention for acceleration. (在最新硬件上可用)
python app/hydit_app.py --infer-mode fa

# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 
python app/hydit_app.py --no-enhance

# Start with English UI
python app/hydit_app.py --lang en

# Start a multi-turn(对话形式) T2I generation UI. 
# If your DCU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.
python app/multiTurnT2I_app.py

result

结果

prompt千里冰封万里雪飘飞流直下三千尺疑是银河落九天一只金毛犬叼着一个RTX4090显卡

精度

应用场景

算法类别

AIGC

热点应用行业

零售,广媒,电商

预训练权重

预训练权重快速下载中心:SCNet AlModels ,项目中的预训练权重可从快速下载通道下载:HunyuanDiT

下载链接中的所有模型文件,并放入ckpts文件中。

ckpts/
├── dialoggen
│   ├── config.json
│   ├── generation_config.json
│   ├── model-00001-of-00004.safetensors
│   ├── model-00002-of-00004.safetensors
│   ├── model-00003-of-00004.safetensors
│   ├── model-00004-of-00004.safetensors
│   ├── model.safetensors.index.json
│   ├── openai
│   │   └── clip-vit-large-patch14-336
│   │       ├── config.json
│   │       ├── merges.txt
│   │       ├── preprocessor_config.json
│   │       ├── pytorch_model.bin
│   │       ├── README.md
│   │       ├── special_tokens_map.json
│   │       ├── tokenizer_config.json
│   │       ├── tokenizer.json
│   │       └── vocab.json
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── tokenizer.model
└── t2i
    ├── clip_text_encoder
    │   ├── config.json
    │   └── pytorch_model.bin
    ├── model
    │   ├── pytorch_model_ema.pt
    │   └── pytorch_model_module.pt
    ├── mt5
    │   ├── config.json
    │   ├── download.sh
    │   ├── generation_config.json
    │   ├── nohup.out
    │   ├── pytorch_model.bin
    │   ├── README.md
    │   ├── special_tokens_map.json
    │   ├── spiece.model
    │   └── tokenizer_config.json
    ├── sdxl-vae-fp16-fix
    │   ├── config.json
    │   ├── diffusion_pytorch_model.bin
    │   └── diffusion_pytorch_model.safetensors
    └── tokenizer
        ├── special_tokens_map.json
        ├── tokenizer_config.json
        ├── vocab_org.txt
        └── vocab.txt

源码仓库及问题反馈

参考资料

;