Bootstrap

生成式对抗网络GAN(一)—基于python实现

基于python实现生成式对抗网络GAN

构建和训练一个生成对抗网络(GAN) ,使其可以生成数字(0-9)的手写图像。

学习目标

  1. 从零开始构建GAN的生成器和判别器。
  2. 创建GAN的生成器和判别器的损失函数。
  3. 训练GAN并将生成的图像可视化。

Python实现

首先,导入一些有用的包和用于构建和训练GAN的数据集,也提供了一个可视化器函数,以帮助您研究GAN将创建的图像。

import torch
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.datasets import MNIST # Training dataset
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
torch.manual_seed(0) # Set for testing purposes, please do not change!

def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28)):
    '''
    Function for visualizing images: Given a tensor of images, number of images, and
    size per image, plots and prints the images in a uniform grid.
    '''
    image_unflat = image_tensor.detach().cpu().view(-1, *size)
    image_grid = make_grid(image_unflat[:num_images], nrow=5)
    plt.imshow(image_grid.permute(1, 2, 0).squeeze())
    plt.show()

MNIST Dataset
判别器将使用的训练图像来自一个名为MNIST的数据集。它包含6万张手写数字的图像,从0到9,如下所示:
在这里插入图片描述
以上图片的尺寸只有28x28 。小尺寸图像使MNIST成为简单训练的理想选择。此外,这些图像也是黑白的,所以只需要一个维度。(后续还会使用三个维度的彩色图片GAN训练)
Generator
第一步构建生成器部件:

def get_generator_block(input_dim, output_dim):
    '''
    Function for returning a block of the generator's neural network
    given input and output dimensions.
    Parameters:
        input_dim: the dimension of the input vector, a scalar
        output_dim: the dimension of the output vector, a scalar
    Returns:
        a generator neural network layer, with a linear transformation 
          followed by a batch normalization and then a relu activation
    '''
    return nn.Sequential(
        # Hint: Replace all of the "None" with the appropriate dimensions.
        # The documentation may be useful if you're less familiar with PyTorch:
        # https://pytorch.org/docs/stable/nn.html.
        #### START CODE HERE ####
        nn.Linear(input_dim, output_dim),
        nn.BatchNorm1d(output_dim),
        #### END CODE HERE ####
        nn.ReLU(inplace=True)
    )

现在可以构建生成器类了。它将取3个值:

  1. 噪声向量维数
  2. 图像尺寸
  3. 初始隐藏维数
    利用这些值,生成器将构建一个5层的神经网络。从噪声向量开始,发生器将通过块函数进行非线性变换,直到张量映射到要输出的图像的大小(与MNIST的真实图像相同的大小)。你需要为最后一层填写代码,因为它与其他层不同。最后一层不需要标准化或激活函数,但需要使用sigmoid函数进行缩放。
class Generator(nn.Module):
    '''
    Generator Class
    Values:
        z_dim: the dimension of the noise vector, a scalar
        im_dim: the dimension of the images, fitted for the dataset used, a scalar
          (MNIST images are 28 x 28 = 784 so that is your default)
        hidden_dim: the inner dimension, a scalar
    '''
    def __init__(self, z_dim=10, im_dim=784, hidden_dim=128):
        super(Generator, self).__init__()
        # Build the neural network
        self.gen = nn.Sequential(
            get_generator_block(z_dim, hidden_dim),
            get_generator_block(hidden_dim, hidden_dim * 2),
            get_generator_block(hidden_dim * 2, hidden_dim * 4),
            get_generator_block(hidden_dim * 4, hidden_dim * 8),
            
            # There is a dropdown with hints if you need them! 
            #### START CODE HERE ####
            nn.Linear(hidden_dim * 8, im_dim),
            nn.Sigmoid()
            #### END CODE HERE ####
        )
    def forward(self, noise):
        '''
        Function for completing a forward pass of the generator: Given a noise tensor, 
        returns generated images.
        Parameters:
            noise: a noise tensor with dimensions (n_samples, z_dim)
        '''
        return self.gen(noise)
    
    # Needed for grading
    def get_gen(self):
        '''
        Returns:
            the sequential model
        '''
        return self.gen

Noise
为了能够使用生成器,您需要能够创建噪声向量。噪声向量z的重要作用是确保从相同类别生成的图像不都看起来一样——可以将其视为随机种子。您将使用PyTorch通过从正态分布中抽样随机数随机生成它。由于每次处理都会处理多幅图像,因此您将同时生成所有的噪声向量。

def get_noise(n_samples, z_dim, device='cpu'):
    '''
    Function for creating noise vectors: Given the dimensions (n_samples, z_dim),
    creates a tensor of that shape filled with random numbers from the normal distribution.
    Parameters:
        n_samples: the number of samples to generate, a scalar
        z_dim: the dimension of the noise vector, a scalar
        device: the device type
    '''
    # NOTE: To use this on GPU with device='cuda', make sure to pass the device 
    # argument to the function you use to generate the noise.
    #### START CODE HERE ####
    return torch.randn(n_samples,z_dim).to(device)
    #### END CODE HERE ####

Discriminator
需要构造的第二个组件是判别器。与生成器组件一样,您将从创建一个为鉴别器构建神经网络块的函数开始。

def get_discriminator_block(input_dim, output_dim):
    '''
    Discriminator Block
    Function for returning a neural network of the discriminator given input and output dimensions.
    Parameters:
        input_dim: the dimension of the input vector, a scalar
        output_dim: the dimension of the output vector, a scalar
    Returns:
        a discriminator neural network layer, with a linear transformation 
          followed by an nn.LeakyReLU activation with negative slope of 0.2 
          (https://pytorch.org/docs/master/generated/torch.nn.LeakyReLU.html)
    '''
    return nn.Sequential(
        #### START CODE HERE ####
        nn.Linear(input_dim,output_dim),
        nn.LeakyReLU(0.2)
        #### END CODE HERE ####
    )

现在您可以使用这些块来制作一个鉴别器,discriminator类包含2个值:

  1. 图像维度 The image dimension
  2. 隐藏层维度 The hidden dimension
    该鉴别器将构建一个4层的神经网络。它将从图像张量开始,并对其进行变换,直到它返回单个数字(一维张量)输出。这个输出将对图像的真伪进行分类。注意,在输出层之后不需要sigmoid,因为它包含在损失函数中。最后,为了使用你的鉴别器的神经网络,你会得到一个前向传递函数,它接受一个要分类的图像张量。
class Discriminator(nn.Module):
    '''
    Discriminator Class
    Values:
        im_dim: the dimension of the images, fitted for the dataset used, a scalar
            (MNIST images are 28x28 = 784 so that is your default)
        hidden_dim: the inner dimension, a scalar
    '''
    def __init__(self, im_dim=784, hidden_dim=128):
        super(Discriminator, self).__init__()
        self.disc = nn.Sequential(
            get_discriminator_block(im_dim, hidden_dim * 4),
            get_discriminator_block(hidden_dim * 4, hidden_dim * 2),
            get_discriminator_block(hidden_dim * 2, hidden_dim),
            # Hint: You want to transform the final output into a single value,
            #       so add one more linear map.
            #### START CODE HERE ####
            nn.Linear(hidden_dim,1)
            #### END CODE HERE ####
        )

    def forward(self, image):
        '''
        Function for completing a forward pass of the discriminator: Given an image tensor, 
        returns a 1-dimension tensor representing fake/real.
        Parameters:
            image: a flattened image tensor with dimension (im_dim)
        '''
        return self.disc(image)
    
    # Needed for grading
    def get_disc(self):
        '''
        Returns:
            the sequential model
        '''
        return self.disc

Training¶

# Set your parameters
criterion = nn.BCEWithLogitsLoss()
n_epochs = 10
z_dim = 64
display_step = 500
batch_size = 128
lr = 0.00001

# Load MNIST dataset as tensors
dataloader = DataLoader(
    MNIST('.', download=False, transform=transforms.ToTensor()),
    batch_size=batch_size,
    shuffle=True)

### DO NOT EDIT ###
device = 'cuda'

初始化生成器、鉴别器和优化器。每个优化器只接受一个特定模型的参数,每个优化器只优化一个模型。

gen = Generator(z_dim).to(device)
gen_opt = torch.optim.Adam(gen.parameters(), lr=lr)
disc = Discriminator().to(device) 
disc_opt = torch.optim.Adam(disc.parameters(), lr=lr)

在训练GAN之前,需要创建损失函数来计算判别器的损失和生成器的损失。这就是判别器和生成器如何知道他们在做什么并改进自己的方式。由于在计算判别器的损失时需要使用生成器,因此需要对生成器的结果调用.detach()以确保只有鉴别器被更新。

def get_disc_loss(gen, disc, criterion, real, num_images, z_dim, device):
    '''
    Return the loss of the discriminator given inputs.
    Parameters:
        gen: the generator model, which returns an image given z-dimensional noise
        disc: the discriminator model, which returns a single-dimensional prediction of real/fake
        criterion: the loss function, which should be used to compare 
               the discriminator's predictions to the ground truth reality of the images 
               (e.g. fake = 0, real = 1)
        real: a batch of real images
        num_images: the number of images the generator should produce, 
                which is also the length of the real images
        z_dim: the dimension of the noise vector, a scalar
        device: the device type
    Returns:
        disc_loss: a torch scalar loss value for the current batch
    '''
    #     These are the steps you will need to complete:
    #       1) Create noise vectors and generate a batch (num_images) of fake images. 
    #            Make sure to pass the device argument to the noise.
    #       2) Get the discriminator's prediction of the fake image 
    #            and calculate the loss. Don't forget to detach the generator!
    #            (Remember the loss function you set earlier -- criterion. You need a 
    #            'ground truth' tensor in order to calculate the loss. 
    #            For example, a ground truth tensor for a fake image is all zeros.)
    #       3) Get the discriminator's prediction of the real image and calculate the loss.
    #       4) Calculate the discriminator's loss by averaging the real and fake loss
    #            and set it to disc_loss.
    #     *Important*: You should NOT write your own loss function here - use criterion(pred, true)!
    #### START CODE HERE ####
    real_label = torch.ones(num_images,1, device = device)
    fake_label = torch.zeros(num_images,1, device = device)
    noise = get_noise(num_images, z_dim, device=device)
    gen_output = gen(noise)
    gen_detached = gen_output.detach()
    fake_output = disc(gen_detached)
    d_loss_fake = criterion(fake_output, fake_label)
    real_output = disc(real)
    d_loss_real = criterion(real_output, real_label)
    disc_loss = torch.div(torch.add(d_loss_fake, d_loss_real), 2)

    #### END CODE HERE ####
    return disc_loss
def get_gen_loss(gen, disc, criterion, num_images, z_dim, device):
    '''
    Return the loss of the generator given inputs.
    Parameters:
        gen: the generator model, which returns an image given z-dimensional noise
        disc: the discriminator model, which returns a single-dimensional prediction of real/fake
        criterion: the loss function, which should be used to compare 
               the discriminator's predictions to the ground truth reality of the images 
               (e.g. fake = 0, real = 1)
        num_images: the number of images the generator should produce, 
                which is also the length of the real images
        z_dim: the dimension of the noise vector, a scalar
        device: the device type
    Returns:
        gen_loss: a torch scalar loss value for the current batch
    '''
    #     These are the steps you will need to complete:
    #       1) Create noise vectors and generate a batch of fake images. 
    #           Remember to pass the device argument to the get_noise function.
    #       2) Get the discriminator's prediction of the fake image.
    #       3) Calculate the generator's loss. Remember the generator wants
    #          the discriminator to think that its fake images are real
    #     *Important*: You should NOT write your own loss function here - use criterion(pred, true)!

    #### START CODE HERE ####
    real_label = torch.ones(num_images, 1, device = device)
    noise = get_noise(num_images, z_dim, device=device)
    fake_imgs = gen(noise)
    disc_output = disc(fake_imgs)
    gen_loss = criterion(disc_output,real_label)
    #### END CODE HERE ####
    return gen_loss

最后,可以把所有东西放在一起了!对于每个时期,将分批处理整个数据集。对于每一批,将需要更新判别器和生成器使用它们的损失。批是在计算损失函数之前进行预测的一组图像(而不是在每幅图像之后计算损失函数)。请注意,可能会看到一个损失大于1,这是可以的,因为二进制交叉熵损失可以是任何正数,对于一个足够有把握的错误猜测。
如果想了解不同的体系结构选择如何导致更好或更差的GANs,可以随意使用该体系结构。例如,考虑改变隐藏维度的大小,或者通过改变层数使网络变浅或变深。
在这里插入图片描述

# OPTIONAL PART

cur_step = 0
mean_generator_loss = 0
mean_discriminator_loss = 0
test_generator = True # Whether the generator should be tested
gen_loss = False
error = False
for epoch in range(n_epochs):
  
    # Dataloader returns the batches
    for real, _ in tqdm(dataloader):
        cur_batch_size = len(real)

        # Flatten the batch of real images from the dataset
        real = real.view(cur_batch_size, -1).to(device)

        ### Update discriminator ###
        # Zero out the gradients before backpropagation
        disc_opt.zero_grad()

        # Calculate discriminator loss
        disc_loss = get_disc_loss(gen, disc, criterion, real, cur_batch_size, z_dim, device)

        # Update gradients
        disc_loss.backward(retain_graph=True)

        # Update optimizer
        disc_opt.step()

        # For testing purposes, to keep track of the generator weights
        if test_generator:
            old_generator_weights = gen.gen[0][0].weight.detach().clone()

        ### Update generator ###
        #     Hint: This code will look a lot like the discriminator updates!
        #     These are the steps you will need to complete:
        #       1) Zero out the gradients.
        #       2) Calculate the generator loss, assigning it to gen_loss.
        #       3) Backprop through the generator: update the gradients and optimizer.
        #### START CODE HERE ####
        gen_opt.zero_grad()
        gen_loss = get_gen_loss(gen, disc, criterion, 10, z_dim, device)
        gen_loss.backward(retain_graph=True)
        gen_opt.step()
        #### END CODE HERE ####

        # For testing purposes, to check that your code changes the generator weights
        if test_generator:
            try:
                assert lr > 0.0000002 or (gen.gen[0][0].weight.grad.abs().max() < 0.0005 and epoch == 0)
                assert torch.any(gen.gen[0][0].weight.detach().clone() != old_generator_weights)
            except:
                error = True
                print("Runtime tests have failed")

        # Keep track of the average discriminator loss
        mean_discriminator_loss += disc_loss.item() / display_step

        # Keep track of the average generator loss
        mean_generator_loss += gen_loss.item() / display_step

        ### Visualization code ###
        if cur_step % display_step == 0 and cur_step > 0:
            print(f"Step {cur_step}: Generator loss: {mean_generator_loss}, discriminator loss: {mean_discriminator_loss}")
            fake_noise = get_noise(cur_batch_size, z_dim, device=device)
            fake = gen(fake_noise)
            show_tensor_images(fake)
            show_tensor_images(real)
            mean_generator_loss = 0
            mean_discriminator_loss = 0
        cur_step += 1

;