深入内核讲明白Android Binder【三】
- 前言
- 一、服务的获取过程内核源码解析
- 1. 客户端获取服务的用户态源码回顾
- 2. 客户端获取服务的内核源码分析
- 2.1 客户端向service_manager发送数据
- 1. binder_ioctl
- 2. binder_ioctl_write_read
- 3. binder_thread_write
- 4. binder_transaction
- 4.1 找到目的进程service_manager
- 4.2 拷贝客户端binder_transaction_data数据中的data.ptr.offsets到service_manager的mmap内核空间
- 4.3 拷贝客户端binder_transaction_data数据中的data.ptr.buffer到service_manager的mmap内核空间
- 4.4 把待处理的数据放到目的进程service_manager的binder_proc或binder_thread的todo链表
- 4.5 binder_proc_transaction将待处理的数据放到service_manager的todo链表,并唤醒service_manager
- 2.2. service_manager被唤醒
- 2.3 binder驱动接收到service_manager解析完客户端发送的数据的数据
- 2.4 客户端被唤醒,获取客户端binder_ref对应的handle
- 3 服务注册和获取过程的简要总结图
- 二、服务的使用过程内核源码解析
- 三、后记
前言
深入内核讲明白Android Binder【一】实现了Binder跨进程通信的客户端和服务端的C语言Demo,并对服务端向service_manager注册服务,客户端向service_manager获取服务的源码进行了详细分析,但分析仅止步于用户态,深入内核讲明白Android Binder【二】,详细分析了服务注册过程Binder驱动内核源码,本篇文章继续分析服务获取过程及使用过程的Binder驱动内核源码。相信有了对上一篇文章的基础,这篇文章读起来应该轻松很多,那么我们就开始吧~
一、服务的获取过程内核源码解析
1. 客户端获取服务的用户态源码回顾
深入内核讲明白Android Binder【一】详细分析了客户端获取服务的用户态源码,这里简单回顾一下客户端通过svcmgr_lookup函数获取服务的用户态源码。
int main(int argc, char **argv)
{
int fd;
struct binder_state *bs;
uint32_t svcmgr = BINDER_SERVICE_MANAGER;
uint32_t handle;
int ret;
if (argc < 2){
fprintf(stderr, "Usage:\n");
fprintf(stderr, "%s <hello|goodbye>\n", argv[0]);
fprintf(stderr, "%s <hello|goodbye> <name>\n", argv[0]);
return -1;
}
//打开驱动
bs = binder_open(128*1024);
if (!bs) {
fprintf(stderr, "failed to open binder driver\n");
return -1;
}
g_bs = bs;
//向service_manager发送数据,获得hello服务句柄
handle = svcmgr_lookup(bs, svcmgr, "hello");
if (!handle) {
fprintf(stderr, "failed to get hello service\n");
return -1;
}
g_hello_handle = handle;
fprintf(stderr, "Handle for hello service = %d\n", g_hello_handle);
/* 向服务端发送数据 */
if (!strcmp(argv[1], "hello"))
{
if (argc == 2) {
sayhello();
} else if (argc == 3) {
ret = sayhello_to(argv[2]);
fprintf(stderr, "get ret of sayhello_to = %d\n", ret);
}
}
binder_release(bs, handle);
return 0;
}
uint32_t svcmgr_lookup(struct binder_state *bs, uint32_t target, const char *name)
{
uint32_t handle;
unsigned iodata[512/4];
struct binder_io msg, reply;
bio_init(&msg, iodata, sizeof(iodata), 4); // 为msg划分iodata的空间
bio_put_uint32(&msg, 0); // strict mode header
bio_put_string16_x(&msg, SVC_MGR_NAME); // 写入android.os.IServiceManager
bio_put_string16_x(&msg, name); // 写入服务名 hello
// target = 0,代表service_manager,SVC_MGR_CHECK_SERVICE代表需要调用service_manager的查找服务的函数
if (binder_call(bs, &msg, &reply, target, SVC_MGR_CHECK_SERVICE))
return 0;
// 获取hello服务的句柄
handle = bio_get_ref(&reply);
if (handle)
binder_acquire(bs, handle);
binder_done(bs, &msg, &reply);
return handle;
}
int binder_call(struct binder_state *bs,
struct binder_io *msg, struct binder_io *reply,
uint32_t target, uint32_t code)
{
int res;
struct binder_write_read bwr;
struct {
uint32_t cmd;
struct binder_transaction_data txn;
} __attribute__((packed)) writebuf;
unsigned readbuf[32];
if (msg->flags & BIO_F_OVERFLOW) {
fprintf(stderr,"binder: txn buffer overflow\n");
goto fail;
}
// 构造binder_transaction_data
writebuf.cmd = BC_TRANSACTION;//ioclt类型
writebuf.txn.target.handle = target;//数据发送给哪个进程
writebuf.txn.code = code;//调用进程的哪个函数
writebuf.txn.flags = 0;
writebuf.txn.data_size = msg->data - msg->data0;//数据本身大小
writebuf.txn.offsets_size = ((char*) msg->offs) - ((char*) msg->offs0);//数据头大小,指向binder_node实体(发送端提供服务函数的地址),bio_put_obj(&msg, ptr);
writebuf.txn.data.ptr.buffer = (uintptr_t)msg->data0;//指向数据本身内存起点
writebuf.txn.data.ptr.offsets = (uintptr_t)msg->offs0;//指向数据头内存起点
// 构造binder_write_read
bwr.write_size = sizeof(writebuf);
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t) &writebuf;
hexdump(msg->data0, msg->data - msg->data0);
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);//调用ioctl发送数据给驱动程序
if (res < 0) {
fprintf(stderr,"binder: ioctl failed (%s)\n", strerror(errno));
goto fail;
}
// 解析数据,将readbuf中的数据解析给reply
res = binder_parse(bs, reply, (uintptr_t) readbuf, bwr.read_consumed, 0);
if (res == 0) return 0;
if (res < 0) goto fail;
}
fail:
memset(reply, 0, sizeof(*reply));
reply->flags |= BIO_F_IOERROR;
return -1;
}
可以看到svcmgr_lookup函数也是组织好binder_io数据,然后调用binder_call函数,把binder_io数据封装为binder_write_read数据,最后通过ioctl发送给service_manager。
这个过程和深入内核讲明白Android Binder【二】中分析的服务端向service_manager注册服务的过程类似,都是组织数据,然后通过ioctl把数据发给service_manager。
那么下面我们就进入linux内核源码,分析数据发给service_manager后,到底干了什么。
2. 客户端获取服务的内核源码分析
服务端调用ioctl,对应会调用到内核Binder驱动程序中的binder_ioctl函数,点击查看源码
2.1 客户端向service_manager发送数据
1. binder_ioctl
// 客户端调用ioctl发送数据给驱动程序
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
// 对应Binder内核驱动程序调用binder_ioctl函数处理数据
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
// 获取服务的binder_proc,它是在服务打开binder驱动的时候创建的,后面我们会分析
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
//为服务进程proc创建binder_thread
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
// 从上面的分析可知此时cmd=BINDER_WRITE_READ
switch (cmd) {
case BINDER_WRITE_READ:
// 处理服客户端数据
ret = binder_ioctl_write_read(filp, arg, thread);
if (ret)
goto err;
break;
......
}
2. binder_ioctl_write_read
static int binder_ioctl_write_read(struct file *filp, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
void __user *ubuf = (void __user *)arg; // 用户空间的数据
// 从用户空间获取客户端发送的数据binder_write_read
struct binder_write_read bwr;
//从用户空间发送的数据头拷贝到内核空间(这部分内核空间被mmap映射到了目标进程)
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
// 上面已经分析过客户端发送的数据保存在binder_write_read,此时它的write_size是大于0的
if (bwr.write_size > 0) { // 向驱动程序写数据
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) { // 从驱动程序读数据
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
binder_inner_proc_lock(proc);
if (!binder_worklist_empty_ilocked(&proc->todo))
binder_wakeup_proc_ilocked(proc);
binder_inner_proc_unlock(proc);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %lld of %lld, read return %lld of %lld\n",
proc->pid, thread->pid,
(u64)bwr.write_consumed, (u64)bwr.write_size,
(u64)bwr.read_consumed, (u64)bwr.read_size);
// 复制数据给到用户空间
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
static inline int copy_from_user(void *to, const void __user volatile *from,
unsigned long n)
{
volatile_memcpy(to, from, n);
return 0;
}
static inline int copy_to_user(void __user volatile *to, const void *from,
unsigned long n)
{
volatile_memcpy(to, from, n);
return 0;
}
3. binder_thread_write
此时cmd是BC_TRANSACTION
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
uint32_t cmd;
struct binder_context *context = proc->context;
// 获取数据buffer,根据上面总结的发送数据可知,这个buffer由cmd和binder_transcation_data两部分数据组成
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
// 发送来的数据consumed=0,因此ptr指向用户空间数据buffer的起点
void __user *ptr = buffer + *consumed;
// 指向数据buffer的末尾
void __user *end = buffer + size;
// 逐个读取客户端发送来的数据(cmd+binder_transcation_data)
while (ptr < end && thread->return_error.cmd == BR_OK) {
int ret;
// 获取用户空间中buffer的cmd值
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
// 移动指针到cmd的位置之后,指向binder_transcation_data数据的内存起点
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
atomic_inc(&binder_stats.bc[_IOC_NR(cmd)]);
atomic_inc(&proc->stats.bc[_IOC_NR(cmd)]);
atomic_inc(&thread->stats.bc[_IOC_NR(cmd)]);
}
// 根据上面总结的发送数据可知,cmd是BC_TRANSACTION
switch (cmd) {
......
/*
BC_TRANSACTION:进程发送信息的cmd
BR_TRANSACTION:进程接收BC_TRANSACTION发送信息的cmd
BC_REPLY:进程回复信息的cmd
BR_REPLY:进程接收BC_REPLY回复信息的cmd
*/
case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;
// 从用户空间拷贝binder_transaction_data到内核空间
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
// 移动指针到binder_transaction_data的位置之后,指向下一个cmd数据的内存起点
ptr += sizeof(tr);
// 处理binder_transaction_data数据
binder_transaction(proc, thread, &tr,
cmd == BC_REPLY, 0);
break;
}
}
}
......
}
int get_user(int *val, const int __user *ptr) {
if (copy_from_user(val, ptr, sizeof(int))) {
return -EFAULT; // 返回错误码
}
return 0; // 成功
}
4. binder_transaction
4.1 找到目的进程service_manager
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
......
// 此时是客户端向内核发送数据,reply为false
if (reply) { // Binder内核驱动程序向用户空间回复数据的处理逻辑
......
} else { // 用户空间数据发送给内核空间的处理逻辑
//1. 找到目的进程,本次分析的是向service_manager获取服务,因此目的进程就是tr->target.handle=0的service_manager
if (tr->target.handle) { // tr->target.handle == 0 代表是service_manager进程,否则是其它进程
.......
} else { //处理service_manager进程
mutex_lock(&context->context_mgr_node_lock);
//这个node是在创建service_manager时通过BINDER_SET_CONTEXT_MGR的cmd创建的
target_node = context->binder_context_mgr_node;
if (target_node)
target_node = binder_get_node_refs_for_txn(
target_node, &target_proc,
&return_error);
else
return_error = BR_DEAD_REPLY;
mutex_unlock(&context->context_mgr_node_lock);
if (target_node && target_proc->pid == proc->pid) {
binder_user_error("%d:%d got transaction to context manager from process owning it\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_invalid_target_handle;
}
}
......
}
}
4.2 拷贝客户端binder_transaction_data数据中的data.ptr.offsets到service_manager的mmap内核空间
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
int ret;
struct binder_transaction *t;
struct binder_work *w;
struct binder_work *tcomplete;
binder_size_t buffer_offset = 0;
binder_size_t off_start_offset, off_end_offset;
binder_size_t off_min;
binder_size_t sg_buf_offset, sg_buf_end_offset;
binder_size_t user_offset = 0;
struct binder_proc *target_proc = NULL;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error = 0;
uint32_t return_error_param = 0;
uint32_t return_error_line = 0;
binder_size_t last_fixup_obj_off = 0;
binder_size_t last_fixup_min_off = 0;
struct binder_context *context = proc->context;
int t_debug_id = atomic_inc_return(&binder_last_id);
ktime_t t_start_time = ktime_get();
char *secctx = NULL;
u32 secctx_sz = 0;
struct list_head sgc_head;
struct list_head pf_head;
const void __user *user_buffer = (const void __user *)
(uintptr_t)tr->data.ptr.buffer;
INIT_LIST_HEAD(&sgc_head);
INIT_LIST_HEAD(&pf_head);
e = binder_transaction_log_add(&binder_transaction_log);
e->debug_id = t_debug_id;
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
strscpy(e->context_name, proc->context->name, BINDERFS_MAX_NAME);
binder_inner_proc_lock(proc);
binder_set_extended_error(&thread->ee, t_debug_id, BR_OK, 0);
binder_inner_proc_unlock(proc);
if (reply) {// 找到要回复的进程
......
} else {// 1. 找到要发送的目的进程
if (tr->target.handle) { // 目的进程非service_manager进程
.....
} else { //目的进程是service_manager进程
// 找到service_manager的binder_node节点
.....
}
......
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
// 为binder_transcation分配内存
t = kzalloc(sizeof(*t), GFP_KERNEL);
.....
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
// 存储发送双方的基本信息
t->from_pid = proc->pid;
t->from_tid = thread->pid;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
......
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
......
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF);
trace_binder_transaction_alloc_buf(t->buffer);
// 把客户端的数据拷贝到目的进程service_manager mmap的内存空间,即t->buffer指向的内存空间
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer,
ALIGN(tr->data_size, sizeof(void *)),
(const void __user *)
(uintptr_t)tr->data.ptr.offsets,
tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
}
/**
* binder_alloc_copy_user_to_buffer() - copy src user to tgt user
* @alloc: binder_alloc for this proc
* @buffer: binder buffer to be accessed
* @buffer_offset: offset into @buffer data
* @from: userspace pointer to source buffer
* @bytes: bytes to copy
*
* Copy bytes from source userspace to target buffer.
*
* Return: bytes remaining to be copied
*/
unsigned long
binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
struct binder_buffer *buffer,
binder_size_t buffer_offset,
const void __user *from,
size_t bytes)
{
if (!check_buffer(alloc, buffer, buffer_offset, bytes))
return bytes;
while (bytes) {
unsigned long size;
unsigned long ret;
struct page *page;
pgoff_t pgoff;
void *kptr;
page = binder_alloc_get_page(alloc, buffer,
buffer_offset, &pgoff);
size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
kptr = kmap_local_page(page) + pgoff;
// 拷贝服务端数据到service_manager mmap的内核内存空间
ret = copy_from_user(kptr, from, size);
kunmap_local(kptr);
if (ret)
return bytes - size + ret;
bytes -= size;
from += size;
buffer_offset += size;
}
return 0;
}
4.3 拷贝客户端binder_transaction_data数据中的data.ptr.buffer到service_manager的mmap内核空间
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
int ret;
struct binder_transaction *t;
struct binder_work *w;
struct binder_work *tcomplete;
binder_size_t buffer_offset = 0;
binder_size_t off_start_offset, off_end_offset;
binder_size_t off_min;
binder_size_t sg_buf_offset, sg_buf_end_offset;
binder_size_t user_offset = 0;
struct binder_proc *target_proc = NULL;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error = 0;
uint32_t return_error_param = 0;
uint32_t return_error_line = 0;
binder_size_t last_fixup_obj_off = 0;
binder_size_t last_fixup_min_off = 0;
struct binder_context *context = proc->context;
int t_debug_id = atomic_inc_return(&binder_last_id);
ktime_t t_start_time = ktime_get();
char *secctx = NULL;
u32 secctx_sz = 0;
struct list_head sgc_head;
struct list_head pf_head;
const void __user *user_buffer = (const void __user *)
(uintptr_t)tr->data.ptr.buffer;
INIT_LIST_HEAD(&sgc_head);
INIT_LIST_HEAD(&pf_head);
e = binder_transaction_log_add(&binder_transaction_log);
e->debug_id = t_debug_id;
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
strscpy(e->context_name, proc->context->name, BINDERFS_MAX_NAME);
binder_inner_proc_lock(proc);
binder_set_extended_error(&thread->ee, t_debug_id, BR_OK, 0);
binder_inner_proc_unlock(proc);
if (reply) {// 找到要回复的进程
......
} else {// 1. 找到要发送的目的进程
if (tr->target.handle) { // 目的进程非service_manager进程
.....
} else { //目的进程是service_manager进程
// 找到service_manager的binder_node节点
.....
}
......
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
// 为binder_transcation分配内存
t = kzalloc(sizeof(*t), GFP_KERNEL);
.....
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
// 存储发送双方的基本信息
t->from_pid = proc->pid;
t->from_tid = thread->pid;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
......
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
......
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF);
trace_binder_transaction_alloc_buf(t->buffer);
// 把客户端的数据拷贝到目的进程service_manager mmap的内存空间,即t->buffer指向的内存空间
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer,
ALIGN(tr->data_size, sizeof(void *)),
(const void __user *)
(uintptr_t)tr->data.ptr.offsets,
tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
/* Done processing objects, copy the rest of the buffer */
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer, user_offset,
user_buffer + user_offset,
tr->data_size - user_offset)) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
}
4.4 把待处理的数据放到目的进程service_manager的binder_proc或binder_thread的todo链表
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
int ret;
struct binder_transaction *t;
struct binder_work *w;
struct binder_work *tcomplete;
binder_size_t buffer_offset = 0;
binder_size_t off_start_offset, off_end_offset;
binder_size_t off_min;
binder_size_t sg_buf_offset, sg_buf_end_offset;
binder_size_t user_offset = 0;
struct binder_proc *target_proc = NULL;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error = 0;
uint32_t return_error_param = 0;
uint32_t return_error_line = 0;
binder_size_t last_fixup_obj_off = 0;
binder_size_t last_fixup_min_off = 0;
struct binder_context *context = proc->context;
int t_debug_id = atomic_inc_return(&binder_last_id);
ktime_t t_start_time = ktime_get();
char *secctx = NULL;
u32 secctx_sz = 0;
struct list_head sgc_head;
struct list_head pf_head;
const void __user *user_buffer = (const void __user *)
(uintptr_t)tr->data.ptr.buffer;
INIT_LIST_HEAD(&sgc_head);
INIT_LIST_HEAD(&pf_head);
e = binder_transaction_log_add(&binder_transaction_log);
e->debug_id = t_debug_id;
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
strscpy(e->context_name, proc->context->name, BINDERFS_MAX_NAME);
binder_inner_proc_lock(proc);
binder_set_extended_error(&thread->ee, t_debug_id, BR_OK, 0);
binder_inner_proc_unlock(proc);
if (reply) {// 找到要回复的进程
......
} else {// 1. 找到要发送的目的进程
if (tr->target.handle) { // 目的进程非service_manager进程
.....
} else { //目的进程是service_manager进程
// 找到service_manager的binder_node节点
.....
}
......
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
// 为binder_transcation分配内存
t = kzalloc(sizeof(*t), GFP_KERNEL);
.....
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
// 存储发送双方的基本信息
t->from_pid = proc->pid;
t->from_tid = thread->pid;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
......
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
......
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF);
trace_binder_transaction_alloc_buf(t->buffer);
// 把客户端的数据拷贝到目的进程service_manager mmap的内存空间,即t->buffer指向的内存空间
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer,
ALIGN(tr->data_size, sizeof(void *)),
(const void __user *)
(uintptr_t)tr->data.ptr.offsets,
tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
/* Done processing objects, copy the rest of the buffer */
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer, user_offset,
user_buffer + user_offset,
tr->data_size - user_offset)) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
t->work.type = BINDER_WORK_TRANSACTION;
if (reply) {
......
} else if (!(t->flags & TF_ONE_WAY)) {
BUG_ON(t->buffer->async_transaction != 0);
binder_inner_proc_lock(proc);
/*
* Defer the TRANSACTION_COMPLETE, so we don't return to
* userspace immediately; this allows the target process to
* immediately start processing this transaction, reducing
* latency. We will then return the TRANSACTION_COMPLETE when
* the target replies (or there is an error).
*/
binder_enqueue_deferred_thread_work_ilocked(thread, tcomplete);
t->need_reply = 1;
t->from_parent = thread->transaction_stack;
//入栈
thread->transaction_stack = t;
binder_inner_proc_unlock(proc);
//将数据放入目的进程的binder_proc或binder_thread的todo链表
return_error = binder_proc_transaction(t,
target_proc, target_thread);
if (return_error) {
binder_inner_proc_lock(proc);
binder_pop_transaction_ilocked(thread, t);
binder_inner_proc_unlock(proc);
goto err_dead_proc_or_thread;
}
} else {
......
}
}
4.5 binder_proc_transaction将待处理的数据放到service_manager的todo链表,并唤醒service_manager
static int binder_proc_transaction(struct binder_transaction *t,
struct binder_proc *proc,
struct binder_thread *thread)
{
struct binder_node *node = t->buffer->target_node;
bool oneway = !!(t->flags & TF_ONE_WAY);
bool pending_async = false;
struct binder_transaction *t_outdated = NULL;
bool frozen = false;
BUG_ON(!node);
binder_node_lock(node);
if (oneway) {
BUG_ON(thread);
if (node->has_async_transaction)
pending_async = true;
else
node->has_async_transaction = true;
}
binder_inner_proc_lock(proc);
if (proc->is_frozen) {
frozen = true;
proc->sync_recv |= !oneway;
proc->async_recv |= oneway;
}
if ((frozen && !oneway) || proc->is_dead ||
(thread && thread->is_dead)) {
binder_inner_proc_unlock(proc);
binder_node_unlock(node);
return frozen ? BR_FROZEN_REPLY : BR_DEAD_REPLY;
}
if (!thread && !pending_async)
thread = binder_select_thread_ilocked(proc);
if (thread) {
binder_enqueue_thread_work_ilocked(thread, &t->work);//将数据放入目的进程的binder_thread
} else if (!pending_async) {
binder_enqueue_work_ilocked(&t->work, &proc->todo);//将数据放入目的进程的binder_proc
} else {
if ((t->flags & TF_UPDATE_TXN) && frozen) {
t_outdated = binder_find_outdated_transaction_ilocked(t,
&node->async_todo);
if (t_outdated) {
binder_debug(BINDER_DEBUG_TRANSACTION,
"txn %d supersedes %d\n",
t->debug_id, t_outdated->debug_id);
list_del_init(&t_outdated->work.entry);
proc->outstanding_txns--;
}
}
binder_enqueue_work_ilocked(&t->work, &node->async_todo);
}
if (!pending_async)
binder_wakeup_thread_ilocked(proc, thread, !oneway /* sync */);
proc->outstanding_txns++;
binder_inner_proc_unlock(proc);
binder_node_unlock(node);
/*
* To reduce potential contention, free the outdated transaction and
* buffer after releasing the locks.
*/
if (t_outdated) {
struct binder_buffer *buffer = t_outdated->buffer;
t_outdated->buffer = NULL;
buffer->transaction = NULL;
trace_binder_transaction_update_buffer_release(buffer);
binder_release_entire_buffer(proc, NULL, buffer, false);
binder_alloc_free_buf(&proc->alloc, buffer);
kfree(t_outdated);
binder_stats_deleted(BINDER_STAT_TRANSACTION);
}
if (oneway && frozen)
return BR_TRANSACTION_PENDING_FROZEN;
return 0;
}
static void
binder_enqueue_thread_work_ilocked(struct binder_thread *thread,
struct binder_work *work)
{
WARN_ON(!list_empty(&thread->waiting_thread_node));
binder_enqueue_work_ilocked(work, &thread->todo); // 将待处理的数据放到thread的todo链表
/* (e)poll-based threads require an explicit wakeup signal when
* queuing their own work; they rely on these events to consume
* messages without I/O block. Without it, threads risk waiting
* indefinitely without handling the work.
*/
if (thread->looper & BINDER_LOOPER_STATE_POLL &&
thread->pid == current->pid && !thread->process_todo)
// 唤醒service_manager
wake_up_interruptible_sync(&thread->wait);
thread->process_todo = true;
}
static void
binder_enqueue_work_ilocked(struct binder_work *work,
struct list_head *target_list)
{
BUG_ON(target_list == NULL);
BUG_ON(work->entry.next && !list_empty(&work->entry));
list_add_tail(&work->entry, target_list);
}
2.2. service_manager被唤醒
1. service_manager发送ioctl读取内核中的数据
int main(int argc, char **argv)
{
struct binder_state *bs;
bs = binder_open(128*1024);
if (!bs) {
ALOGE("failed to open binder driver\n");
return -1;
}
if (binder_become_context_manager(bs)) {
ALOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
svcmgr_handle = BINDER_SERVICE_MANAGER;
binder_loop(bs, svcmgr_handler);
return 0;
}
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
// 发起读操作
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
2. binder_ioctl
// res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);进入binder驱动程序
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
//为进程proc创建binder_thread
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, arg, thread);
if (ret)
goto err;
break;
......
}
......
}
3. binder_ioctl_write_read
static int binder_ioctl_write_read(struct file *filp, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
//从用户空间拷贝数据到内核空间(这部分内核空间被mmap映射到了目标进程)
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
if (bwr.write_size > 0) {
......
}
if (bwr.read_size > 0) {
ret = binder_thread_read(proc, thread, bwr.read_buffer,
bwr.read_size,
&bwr.read_consumed,
filp->f_flags & O_NONBLOCK);
trace_binder_read_done(ret);
binder_inner_proc_lock(proc);
if (!binder_worklist_empty_ilocked(&proc->todo))
binder_wakeup_proc_ilocked(proc);
binder_inner_proc_unlock(proc);
if (ret < 0) {
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %lld of %lld, read return %lld of %lld\n",
proc->pid, thread->pid,
(u64)bwr.write_consumed, (u64)bwr.write_size,
(u64)bwr.read_consumed, (u64)bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
4. binder_thread_read
读取service_manager内核空间的数据,写入service_manager用户空间
static int binder_thread_read(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed, int non_block)
{
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
void __user *ptr = buffer + *consumed;
void __user *end = buffer + size;
int ret = 0;
int wait_for_proc_work;
if (*consumed == 0) {
if (put_user(BR_NOOP, (uint32_t __user *)ptr))//对于所有的读操作,数据头部都是BR_NOOP
return -EFAULT;
ptr += sizeof(uint32_t);
}
retry:
binder_inner_proc_lock(proc);
wait_for_proc_work = binder_available_for_proc_work_ilocked(thread);
binder_inner_proc_unlock(proc);
thread->looper |= BINDER_LOOPER_STATE_WAITING;
trace_binder_wait_for_work(wait_for_proc_work,
!!thread->transaction_stack,
!binder_worklist_empty(proc, &thread->todo));
if (wait_for_proc_work) {
if (!(thread->looper & (BINDER_LOOPER_STATE_REGISTERED |
BINDER_LOOPER_STATE_ENTERED))) {
binder_user_error("%d:%d ERROR: Thread waiting for process work before calling BC_REGISTER_LOOPER or BC_ENTER_LOOPER (state %x)\n",
proc->pid, thread->pid, thread->looper);
wait_event_interruptible(binder_user_error_wait,
binder_stop_on_user_error < 2);
}
binder_set_nice(proc->default_priority);
}
//没有数据就休眠
if (non_block) {
if (!binder_has_work(thread, wait_for_proc_work))
ret = -EAGAIN;
} else {
ret = binder_wait_for_work(thread, wait_for_proc_work);
}
thread->looper &= ~BINDER_LOOPER_STATE_WAITING;
if (ret)
return ret;
while (1) {
uint32_t cmd;
struct binder_transaction_data_secctx tr;
struct binder_transaction_data *trd = &tr.transaction_data;
struct binder_work *w = NULL;
struct list_head *list = NULL;
struct binder_transaction *t = NULL;
struct binder_thread *t_from;
size_t trsize = sizeof(*trd);
binder_inner_proc_lock(proc);
//如果proc的thread->todo链表有数据,拿到链表数据
if (!binder_worklist_empty_ilocked(&thread->todo))
list = &thread->todo;
//如果proc->todo链表有数据,拿到链表数据
else if (!binder_worklist_empty_ilocked(&proc->todo) &&
wait_for_proc_work)
list = &proc->todo;
else {
binder_inner_proc_unlock(proc);
/* no data added */
if (ptr - buffer == 4 && !thread->looper_need_return)
goto retry;
break;
}
if (end - ptr < sizeof(tr) + 4) {
binder_inner_proc_unlock(proc);
break;
}
w = binder_dequeue_work_head_ilocked(list);
if (binder_worklist_empty_ilocked(&thread->todo))
thread->process_todo = false;
//逐个处理相关类型的数据,server唤醒service_manager,将数据添加到链表时,binder_work.type是BINDER_WORK_TRANSACTION
switch (w->type) {
case BINDER_WORK_TRANSACTION: {
binder_inner_proc_unlock(proc);
t= container_of(w, struct binder_transaction, work);//构造出发送方发来的binder_transaction
} break;
......
}
if (!t)
continue;
BUG_ON(t->buffer == NULL);
if (t->buffer->target_node) {
struct binder_node *target_node = t->buffer->target_node;
trd->target.ptr = target_node->ptr;
trd->cookie = target_node->cookie;
t->saved_priority = task_nice(current);
if (t->priority < target_node->min_priority &&
!(t->flags & TF_ONE_WAY))
binder_set_nice(t->priority);
else if (!(t->flags & TF_ONE_WAY) ||
t->saved_priority > target_node->min_priority)
binder_set_nice(target_node->min_priority);
//从server发送数据给service_manager,cmd是BC_TRANSACTION
//从service_manager返回数据给server,将cmd设为BR_TRANSACTION,
cmd = BR_TRANSACTION;
} else {
trd->target.ptr = 0;
trd->cookie = 0;
cmd = BR_REPLY;
}
trd->code = t->code;
trd->flags = t->flags;
trd->sender_euid = from_kuid(current_user_ns(), t->sender_euid);
......
trd->data_size = t->buffer->data_size;
trd->offsets_size = t->buffer->offsets_size;
trd->data.ptr.buffer = t->buffer->user_data;
trd->data.ptr.offsets = trd->data.ptr.buffer +
ALIGN(t->buffer->data_size,
sizeof(void *));
tr.secctx = t->security_ctx;
if (t->security_ctx) {
cmd = BR_TRANSACTION_SEC_CTX;
trsize = sizeof(tr);
}
// 把cmd写入service_manager的用户空间
if (put_user(cmd, (uint32_t __user *)ptr)) {
if (t_from)
binder_thread_dec_tmpref(t_from);
binder_cleanup_transaction(t, "put_user failed",
BR_FAILED_REPLY);
return -EFAULT;
}
ptr += sizeof(uint32_t);
// 把tr写入service_manager的用户空间,tr.transaction_data中包括了客户端发送来的数据
if (copy_to_user(ptr, &tr, trsize)) {
if (t_from)
binder_thread_dec_tmpref(t_from);
binder_cleanup_transaction(t, "copy_to_user failed",
BR_FAILED_REPLY);
return -EFAULT;
}
ptr += trsize;
......
done:
......
return 0;
}
5. 从service_manager内核空间读取到的数据组织形式
6. binder_parse解析客户端发送给service_manager的数据
此时cmd是BR_TRANSACTION
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);//读到数据
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
//解析读到的数据
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
case BR_NOOP:
break;
......
//收到数据的处理情况,(收到的数据中有服务名称,服务的handle)
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
//构造binder_io
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
//处理binde_io
res = func(bs, txn, &msg, &reply); // func = svcmgr_handler,用于添加/获取服务
//将处理完的数据,发送给server
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
......
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
7. svcmgr_handler处理客户端发送给service_manager的数据,获取客户端请求的服务handle
int svcmgr_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
size_t len;
uint32_t handle;
uint32_t strict_policy;
int allow_isolated;
//ALOGI("target=%x code=%d pid=%d uid=%d\n",
// txn->target.handle, txn->code, txn->sender_pid, txn->sender_euid);
if (txn->target.handle != svcmgr_handle)
return -1;
if (txn->code == PING_TRANSACTION)
return 0;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don't propagate it
// further (since we do no outbound RPCs anyway).
strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len); //传入的是android.os.IServiceManager
if (s == NULL) {
return -1;
}
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {//传入的必须是android.os.IServiceManager
fprintf(stderr,"invalid id %s\n", str8(s, len));
return -1;
}
switch(txn->code) {
case SVC_MGR_GET_SERVICE:
case SVC_MGR_CHECK_SERVICE:
s = bio_get_string16(msg, &len); // 获取客户端要获取的服务的名字"hello"
if (s == NULL) {
return -1;
}
// 在service_manager的服务列表中寻找服务名为hello的服务的handle
handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
if (!handle)
break;
// 将服务handle写入reply
bio_put_ref(reply, handle);
return 0;
......
bio_put_uint32(reply, 0);//处理完后,最后要构造一个reply,并放入0
return 0;
}
uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid)
{
struct svcinfo *si;
if (!svc_can_find(s, len, spid)) {
ALOGE("find_service('%s') uid=%d - PERMISSION DENIED\n",
str8(s, len), uid);
return 0;
}
si = find_svc(s, len);
//ALOGI("check_service('%s') handle = %x\n", str8(s, len), si ? si->handle : 0);
if (si && si->handle) {
if (!si->allow_isolated) {
// If this service doesn't allow access from isolated processes,
// then check the uid to see if it is isolated.
uid_t appid = uid % AID_USER;
if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
return 0;
}
}
return si->handle;
} else {
return 0;
}
}
struct svcinfo *find_svc(const uint16_t *s16, size_t len)
{
struct svcinfo *si;
for (si = svclist; si; si = si->next) {
if ((len == si->len) &&
!memcmp(s16, si->name, len * sizeof(uint16_t))) {
return si;
}
}
return NULL;
}
void bio_put_ref(struct binder_io *bio, uint32_t handle)
{
struct flat_binder_object *obj;
if (handle)
obj = bio_alloc_obj(bio);
else
obj = bio_alloc(bio, sizeof(*obj));
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_HANDLE;
obj->handle = handle;
obj->cookie = 0;
}
8. binder_send_reply将获取到的服务handle数据回复给驱动程序
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
case BR_NOOP:
break;
......
//收到数据的处理情况,(收到的数据中有服务名称,服务的handle)
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
//构造binder_io
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
//处理binde_io
res = func(bs, txn, &msg, &reply); // func = svcmgr_handler,用于添加/获取服务
//将处理完的数据,发送给server
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
......
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
void binder_send_reply(struct binder_state *bs,
struct binder_io *reply,
binder_uintptr_t buffer_to_free,
int status)
{
struct {
uint32_t cmd_free;
binder_uintptr_t buffer;
uint32_t cmd_reply;
struct binder_transaction_data txn;
} __attribute__((packed)) data;
data.cmd_free = BC_FREE_BUFFER;//server拷贝到service_manager映射的内核态缓冲区的数据,用完后,就可以释放了
data.buffer = buffer_to_free;
data.cmd_reply = BC_REPLY; // service_manager处理完数据后,将结果回复回去,cmd = BC_REPLY
data.txn.target.ptr = 0;
data.txn.cookie = 0;
data.txn.code = 0;
if (status) {
data.txn.flags = TF_STATUS_CODE;
data.txn.data_size = sizeof(int);
data.txn.offsets_size = 0;
data.txn.data.ptr.buffer = (uintptr_t)&status;
data.txn.data.ptr.offsets = 0;
} else {
data.txn.flags = 0;
data.txn.data_size = reply->data - reply->data0;
data.txn.offsets_size = ((char*) reply->offs) - ((char*) reply->offs0);
data.txn.data.ptr.buffer = (uintptr_t)reply->data0;
data.txn.data.ptr.offsets = (uintptr_t)reply->offs0;
}
binder_write(bs, &data, sizeof(data));
}
int binder_write(struct binder_state *bs, void *data, size_t len)
{
struct binder_write_read bwr;
int res;
bwr.write_size = len;
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t) data;
bwr.read_size = 0;
bwr.read_consumed = 0;
bwr.read_buffer = 0;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
fprintf(stderr,"binder_write: ioctl failed (%s)\n",
strerror(errno));
}
return res;
}
2.3 binder驱动接收到service_manager解析完客户端发送的数据的数据
1. binder_ioctl
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
//为进程proc创建binder_thread
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, arg, thread);
if (ret)
goto err;
break;
......
}
......
}
2. binder_ioctl_write_read
static int binder_ioctl_write_read(struct file *filp, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
//从用户空间拷贝数据到内核空间(这部分内核空间被mmap映射到了目标进程)
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {
......
}
......
out:
return ret;
}
3. binder_thread_write
此时cmd是BC_REPLY
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
uint32_t cmd;
struct binder_context *context = proc->context;
// 获取数据buffer,根据上面总结的发送数据可知,这个buffer由cmd和binder_transcation_data两部分数据组成
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
// 发送来的数据consumed=0,因此ptr指向用户空间数据buffer的起点
void __user *ptr = buffer + *consumed;
// 指向数据buffer的末尾
void __user *end = buffer + size;
// 逐个读取客户端发送来的数据(cmd+binder_transcation_data)
while (ptr < end && thread->return_error.cmd == BR_OK) {
int ret;
// 获取用户空间中buffer的cmd值
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
// 移动指针到cmd的位置之后,指向binder_transcation_data数据的内存起点
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
atomic_inc(&binder_stats.bc[_IOC_NR(cmd)]);
atomic_inc(&proc->stats.bc[_IOC_NR(cmd)]);
atomic_inc(&thread->stats.bc[_IOC_NR(cmd)]);
}
// 根据上面总结的发送数据可知,cmd是BC_TRANSACTION
switch (cmd) {
......
/*
BC_TRANSACTION:进程发送信息的cmd
BR_TRANSACTION:进程接收BC_TRANSACTION发送信息的cmd
BC_REPLY:进程回复信息的cmd
BR_REPLY:进程接收BC_REPLY回复信息的cmd
*/
case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;
// 从用户空间拷贝binder_transaction_data到内核空间
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
// 移动指针到binder_transaction_data的位置之后,指向下一个cmd数据的内存起点
ptr += sizeof(tr);
// 处理binder_transaction_data数据
binder_transaction(proc, thread, &tr,
cmd == BC_REPLY, 0);
break;
}
}
}
......
}
int get_user(int *val, const int __user *ptr) {
if (copy_from_user(val, ptr, sizeof(int))) {
return -EFAULT; // 返回错误码
}
return 0; // 成功
}
4. binder_transaction
4.1. 找到要回复的进程
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
......
if (reply) {// 找到要回复的进程
binder_inner_proc_lock(proc);
in_reply_to = thread->transaction_stack;//从栈中取出binder_transaction,获得要回复给谁
if (in_reply_to == NULL) {
binder_inner_proc_unlock(proc);
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_empty_call_stack;
}
if (in_reply_to->to_thread != thread) {
spin_lock(&in_reply_to->lock);
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
spin_unlock(&in_reply_to->lock);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
goto err_bad_call_stack;
}
thread->transaction_stack = in_reply_to->to_parent;//出栈
binder_inner_proc_unlock(proc);
binder_set_nice(in_reply_to->saved_priority);
target_thread = binder_get_txn_from_and_acq_inner(in_reply_to);
if (target_thread == NULL) {
/* annotation for sparse */
__release(&target_thread->proc->inner_lock);
binder_txn_error("%d:%d reply target not found\n",
thread->pid, proc->pid);
return_error = BR_DEAD_REPLY;
return_error_line = __LINE__;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
binder_inner_proc_unlock(target_thread->proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
// 找到要回复的进程
target_proc = target_thread->proc;
target_proc->tmp_ref++;
binder_inner_proc_unlock(target_thread->proc);
} else {// 1. 找到要发送的目的进程
......
}
......
}
4.2 处理flat_binder_object
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
......
if (reply) {// 找到要回复的进程
binder_inner_proc_lock(proc);
in_reply_to = thread->transaction_stack;//从栈中取出binder_transaction,获得要回复给谁
if (in_reply_to == NULL) {
binder_inner_proc_unlock(proc);
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_empty_call_stack;
}
if (in_reply_to->to_thread != thread) {
spin_lock(&in_reply_to->lock);
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
spin_unlock(&in_reply_to->lock);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
goto err_bad_call_stack;
}
thread->transaction_stack = in_reply_to->to_parent;//出栈
binder_inner_proc_unlock(proc);
binder_set_nice(in_reply_to->saved_priority);
target_thread = binder_get_txn_from_and_acq_inner(in_reply_to);
if (target_thread == NULL) {
/* annotation for sparse */
__release(&target_thread->proc->inner_lock);
binder_txn_error("%d:%d reply target not found\n",
thread->pid, proc->pid);
return_error = BR_DEAD_REPLY;
return_error_line = __LINE__;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
binder_inner_proc_unlock(target_thread->proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
// 找到要回复的进程
target_proc = target_thread->proc;
target_proc->tmp_ref++;
binder_inner_proc_unlock(target_thread->proc);
} else {// 1. 找到要发送的目的进程
......
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
// 为binder_transcation分配内存
t = kzalloc(sizeof(*t), GFP_KERNEL);
.....
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
// 存储发送双方的基本信息
t->from_pid = proc->pid;
t->from_tid = thread->pid;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
......
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
......
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF);
trace_binder_transaction_alloc_buf(t->buffer);
// 把客户端的数据拷贝到目的进程test_client mmap的内存空间
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer,
ALIGN(tr->data_size, sizeof(void *)),
(const void __user *)
(uintptr_t)tr->data.ptr.offsets,
tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
//处理server传入的binder_io.offs数据,这个数据指向用于构建binder_node实体的 flat_binder_object
for (buffer_offset = off_start_offset; buffer_offset < off_end_offset;
buffer_offset += sizeof(binder_size_t)) {
struct binder_object_header *hdr;
size_t object_size;
struct binder_object object;
binder_size_t object_offset;
binder_size_t copy_size;
if (binder_alloc_copy_from_buffer(&target_proc->alloc,
&object_offset,
t->buffer,
buffer_offset,
sizeof(object_offset))) {
binder_txn_error("%d:%d copy offset from buffer failed\n",
thread->pid, proc->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
/*
* Copy the source user buffer up to the next object
* that will be processed.
*/
copy_size = object_offset - user_offset;
if (copy_size && (user_offset > object_offset ||
binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer, user_offset,
user_buffer + user_offset,
copy_size))) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
// 将指向flat_binder_object的指针拷贝给object
object_size = binder_get_object(target_proc, user_buffer,
t->buffer, object_offset, &object);
if (object_size == 0 || object_offset < off_min) {
binder_user_error("%d:%d got transaction with invalid offset (%lld, min %lld max %lld) or object.\n",
proc->pid, thread->pid,
(u64)object_offset,
(u64)off_min,
(u64)t->buffer->data_size);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
/*
* Set offset to the next buffer fragment to be
* copied
*/
user_offset = object_offset + object_size;
hdr = &object.hdr;
off_min = object_offset + object_size;
// 此处 binder类型的是BINDER_TYPE_HANDLE,通过handle在service_manager的binder-ref中找到hello服务的binder_node
switch (hdr->type) {
//处理binder实体
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
......
} break;
//处理binder引用
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
struct flat_binder_object *fp;
fp = to_flat_binder_object(hdr);
ret = binder_translate_handle(fp, t, thread);
if (ret < 0 ||
binder_alloc_copy_to_buffer(&target_proc->alloc,
t->buffer,
object_offset,
fp, sizeof(*fp))) {
binder_txn_error("%d:%d translate handle failed\n",
thread->pid, proc->pid);
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
} break;
......
}
......
}
4.3 根据handle找到服务的binder_node,
static int binder_translate_handle(struct flat_binder_object *fp,
struct binder_transaction *t,
struct binder_thread *thread)
{
struct binder_proc *proc = thread->proc;
struct binder_proc *target_proc = t->to_proc;
struct binder_node *node;
struct binder_ref_data src_rdata;
int ret = 0;
// 根据handle从service_manager中找到服务的binder_node
node = binder_get_node_from_ref(proc, fp->handle,
fp->hdr.type == BINDER_TYPE_HANDLE, &src_rdata);
if (!node) {
binder_user_error("%d:%d got transaction with invalid handle, %d\n",
proc->pid, thread->pid, fp->handle);
return -EINVAL;
}
if (security_binder_transfer_binder(proc->cred, target_proc->cred)) {
ret = -EPERM;
goto done;
}
binder_node_lock(node);
if (node->proc == target_proc) {
if (fp->hdr.type == BINDER_TYPE_HANDLE)
fp->hdr.type = BINDER_TYPE_BINDER;
else
fp->hdr.type = BINDER_TYPE_WEAK_BINDER;
fp->binder = node->ptr;
fp->cookie = node->cookie;
if (node->proc)
binder_inner_proc_lock(node->proc);
else
__acquire(&node->proc->inner_lock);
binder_inc_node_nilocked(node,
fp->hdr.type == BINDER_TYPE_BINDER,
0, NULL);
if (node->proc)
binder_inner_proc_unlock(node->proc);
else
__release(&node->proc->inner_lock);
trace_binder_transaction_ref_to_node(t, node, &src_rdata);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> node %d u%016llx\n",
src_rdata.debug_id, src_rdata.desc, node->debug_id,
(u64)node->ptr);
binder_node_unlock(node);
} else {
struct binder_ref_data dest_rdata;
binder_node_unlock(node);
// 为客户端创建binder_ref指向服务的binder_node
ret = binder_inc_ref_for_node(target_proc, node,
fp->hdr.type == BINDER_TYPE_HANDLE,
NULL, &dest_rdata);
if (ret)
goto done;
fp->binder = 0;
fp->handle = dest_rdata.desc;
fp->cookie = 0;
trace_binder_transaction_ref_to_ref(t, node, &src_rdata,
&dest_rdata);
binder_debug(BINDER_DEBUG_TRANSACTION,
" ref %d desc %d -> ref %d desc %d (node %d)\n",
src_rdata.debug_id, src_rdata.desc,
dest_rdata.debug_id, dest_rdata.desc,
node->debug_id);
}
done:
binder_put_node(node);
return ret;
}
static struct binder_node *binder_get_node_from_ref(
struct binder_proc *proc,
u32 desc, bool need_strong_ref,
struct binder_ref_data *rdata)
{
struct binder_node *node;
struct binder_ref *ref;
binder_proc_lock(proc);
// 根据handle找到binder_ref
ref = binder_get_ref_olocked(proc, desc, need_strong_ref);
if (!ref)
goto err_no_ref;
// 根据binder_ref找到binder_node
node = ref->node;
/*
* Take an implicit reference on the node to ensure
* it stays alive until the call to binder_put_node()
*/
binder_inc_node_tmpref(node);
if (rdata)
*rdata = ref->data;
binder_proc_unlock(proc);
return node;
err_no_ref:
binder_proc_unlock(proc);
return NULL;
}
static struct binder_ref *binder_get_ref_olocked(struct binder_proc *proc,
u32 desc, bool need_strong_ref)
{
struct rb_node *n = proc->refs_by_desc.rb_node;
struct binder_ref *ref;
while (n) {
ref = rb_entry(n, struct binder_ref, rb_node_desc);
if (desc < ref->data.desc) {
n = n->rb_left;
} else if (desc > ref->data.desc) {
n = n->rb_right;
} else if (need_strong_ref && !ref->data.strong) {
binder_user_error("tried to use weak ref as strong ref\n");
return NULL;
} else {
return ref;
}
}
return NULL;
}
4.4 为客户端创建binder_ref,指向服务的binder_node
static int binder_inc_ref_for_node(struct binder_proc *proc,
struct binder_node *node,
bool strong,
struct list_head *target_list,
struct binder_ref_data *rdata)
{
struct binder_ref *ref;
struct binder_ref *new_ref = NULL;
int ret = 0;
binder_proc_lock(proc);
// 先查找客户端是否已经有对应的binder_ref,若没有则新建binder_ref
ref = binder_get_ref_for_node_olocked(proc, node, NULL);
if (!ref) {
binder_proc_unlock(proc);
new_ref = kzalloc(sizeof(*ref), GFP_KERNEL);
if (!new_ref)
return -ENOMEM;
binder_proc_lock(proc);
ref = binder_get_ref_for_node_olocked(proc, node, new_ref);
}
//增加引用计数
ret = binder_inc_ref_olocked(ref, strong, target_list);
*rdata = ref->data;
if (ret && ref == new_ref) {
/*
* Cleanup the failed reference here as the target
* could now be dead and have already released its
* references by now. Calling on the new reference
* with strong=0 and a tmp_refs will not decrement
* the node. The new_ref gets kfree'd below.
*/
binder_cleanup_ref_olocked(new_ref);
ref = NULL;
}
binder_proc_unlock(proc);
if (new_ref && ref != new_ref)
/*
* Another thread created the ref first so
* free the one we allocated
*/
kfree(new_ref);
return ret;
}
static struct binder_ref *binder_get_ref_for_node_olocked(
struct binder_proc *proc,
struct binder_node *node,
struct binder_ref *new_ref)
{
struct binder_context *context = proc->context;
struct rb_node **p = &proc->refs_by_node.rb_node;
struct rb_node *parent = NULL;
struct binder_ref *ref;
struct rb_node *n;
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_node);
if (node < ref->node)
p = &(*p)->rb_left;
else if (node > ref->node)
p = &(*p)->rb_right;
else
return ref;
}
if (!new_ref)
return NULL;
binder_stats_created(BINDER_STAT_REF);
new_ref->data.debug_id = atomic_inc_return(&binder_last_id);
new_ref->proc = proc;
new_ref->node = node;
rb_link_node(&new_ref->rb_node_node, parent, p);
rb_insert_color(&new_ref->rb_node_node, &proc->refs_by_node);
// 更新binder_ref的handle值,后续客户端通过handle值找到这个binder_ref,进而找到binder_node
new_ref->data.desc = (node == context->binder_context_mgr_node) ? 0 : 1;
for (n = rb_first(&proc->refs_by_desc); n != NULL; n = rb_next(n)) {
ref = rb_entry(n, struct binder_ref, rb_node_desc);
if (ref->data.desc > new_ref->data.desc)
break;
// 客户端引用服务的handle加1
new_ref->data.desc = ref->data.desc + 1;
}
p = &proc->refs_by_desc.rb_node;
while (*p) {
parent = *p;
ref = rb_entry(parent, struct binder_ref, rb_node_desc);
if (new_ref->data.desc < ref->data.desc)
p = &(*p)->rb_left;
else if (new_ref->data.desc > ref->data.desc)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new_ref->rb_node_desc, parent, p);
rb_insert_color(&new_ref->rb_node_desc, &proc->refs_by_desc);
binder_node_lock(node);
hlist_add_head(&new_ref->node_entry, &node->refs);
binder_debug(BINDER_DEBUG_INTERNAL_REFS,
"%d new ref %d desc %d for node %d\n",
proc->pid, new_ref->data.debug_id, new_ref->data.desc,
node->debug_id);
binder_node_unlock(node);
return new_ref;
}
4.5 把数据放到客户端的todo链表,唤醒客户端
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
......
if (reply) {// 找到要回复的进程
binder_inner_proc_lock(proc);
in_reply_to = thread->transaction_stack;//从栈中取出binder_transaction,获得要回复给谁
if (in_reply_to == NULL) {
binder_inner_proc_unlock(proc);
binder_user_error("%d:%d got reply transaction with no transaction stack\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
goto err_empty_call_stack;
}
if (in_reply_to->to_thread != thread) {
spin_lock(&in_reply_to->lock);
binder_user_error("%d:%d got reply transaction with bad transaction stack, transaction %d has target %d:%d\n",
proc->pid, thread->pid, in_reply_to->debug_id,
in_reply_to->to_proc ?
in_reply_to->to_proc->pid : 0,
in_reply_to->to_thread ?
in_reply_to->to_thread->pid : 0);
spin_unlock(&in_reply_to->lock);
binder_inner_proc_unlock(proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
goto err_bad_call_stack;
}
thread->transaction_stack = in_reply_to->to_parent;//出栈
binder_inner_proc_unlock(proc);
binder_set_nice(in_reply_to->saved_priority);
target_thread = binder_get_txn_from_and_acq_inner(in_reply_to);
if (target_thread == NULL) {
/* annotation for sparse */
__release(&target_thread->proc->inner_lock);
binder_txn_error("%d:%d reply target not found\n",
thread->pid, proc->pid);
return_error = BR_DEAD_REPLY;
return_error_line = __LINE__;
goto err_dead_binder;
}
if (target_thread->transaction_stack != in_reply_to) {
binder_user_error("%d:%d got reply transaction with bad target transaction stack %d, expected %d\n",
proc->pid, thread->pid,
target_thread->transaction_stack ?
target_thread->transaction_stack->debug_id : 0,
in_reply_to->debug_id);
binder_inner_proc_unlock(target_thread->proc);
return_error = BR_FAILED_REPLY;
return_error_param = -EPROTO;
return_error_line = __LINE__;
in_reply_to = NULL;
target_thread = NULL;
goto err_dead_binder;
}
// 找到要回复的进程
target_proc = target_thread->proc;
target_proc->tmp_ref++;
binder_inner_proc_unlock(target_thread->proc);
} else {// 1. 找到要发送的目的进程
......
}
if (target_thread)
e->to_thread = target_thread->pid;
e->to_proc = target_proc->pid;
/* TODO: reuse incoming transaction for reply */
// 为binder_transcation分配内存
t = kzalloc(sizeof(*t), GFP_KERNEL);
.....
if (!reply && !(tr->flags & TF_ONE_WAY))
t->from = thread;
else
t->from = NULL;
// 存储发送双方的基本信息
t->from_pid = proc->pid;
t->from_tid = thread->pid;
t->sender_euid = task_euid(proc->tsk);
t->to_proc = target_proc;
t->to_thread = target_thread;
t->code = tr->code;
t->flags = tr->flags;
t->priority = task_nice(current);
......
t->buffer = binder_alloc_new_buf(&target_proc->alloc, tr->data_size,
tr->offsets_size, extra_buffers_size,
!reply && (t->flags & TF_ONE_WAY));
......
t->buffer->debug_id = t->debug_id;
t->buffer->transaction = t;
t->buffer->target_node = target_node;
t->buffer->clear_on_free = !!(t->flags & TF_CLEAR_BUF);
trace_binder_transaction_alloc_buf(t->buffer);
// 把客户端的数据拷贝到目的进程test_client mmap的内存空间
if (binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer,
ALIGN(tr->data_size, sizeof(void *)),
(const void __user *)
(uintptr_t)tr->data.ptr.offsets,
tr->offsets_size)) {
binder_user_error("%d:%d got transaction with invalid offsets ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
......
//处理server传入的binder_io.offs数据,这个数据指向用于构建binder_node实体的 flat_binder_object
for (buffer_offset = off_start_offset; buffer_offset < off_end_offset;
buffer_offset += sizeof(binder_size_t)) {
struct binder_object_header *hdr;
size_t object_size;
struct binder_object object;
binder_size_t object_offset;
binder_size_t copy_size;
if (binder_alloc_copy_from_buffer(&target_proc->alloc,
&object_offset,
t->buffer,
buffer_offset,
sizeof(object_offset))) {
binder_txn_error("%d:%d copy offset from buffer failed\n",
thread->pid, proc->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
/*
* Copy the source user buffer up to the next object
* that will be processed.
*/
copy_size = object_offset - user_offset;
if (copy_size && (user_offset > object_offset ||
binder_alloc_copy_user_to_buffer(
&target_proc->alloc,
t->buffer, user_offset,
user_buffer + user_offset,
copy_size))) {
binder_user_error("%d:%d got transaction with invalid data ptr\n",
proc->pid, thread->pid);
return_error = BR_FAILED_REPLY;
return_error_param = -EFAULT;
return_error_line = __LINE__;
goto err_copy_data_failed;
}
// 将指向flat_binder_object的指针拷贝给object
object_size = binder_get_object(target_proc, user_buffer,
t->buffer, object_offset, &object);
if (object_size == 0 || object_offset < off_min) {
binder_user_error("%d:%d got transaction with invalid offset (%lld, min %lld max %lld) or object.\n",
proc->pid, thread->pid,
(u64)object_offset,
(u64)off_min,
(u64)t->buffer->data_size);
return_error = BR_FAILED_REPLY;
return_error_param = -EINVAL;
return_error_line = __LINE__;
goto err_bad_offset;
}
/*
* Set offset to the next buffer fragment to be
* copied
*/
user_offset = object_offset + object_size;
hdr = &object.hdr;
off_min = object_offset + object_size;
// 此处 binder类型的是BINDER_TYPE_HANDLE,通过handle在service_manager的binder-ref中找到hello服务的binder_node
switch (hdr->type) {
//处理binder实体
case BINDER_TYPE_BINDER:
case BINDER_TYPE_WEAK_BINDER: {
......
} break;
//处理binder引用
case BINDER_TYPE_HANDLE:
case BINDER_TYPE_WEAK_HANDLE: {
struct flat_binder_object *fp;
fp = to_flat_binder_object(hdr);
ret = binder_translate_handle(fp, t, thread);
if (ret < 0 ||
binder_alloc_copy_to_buffer(&target_proc->alloc,
t->buffer,
object_offset,
fp, sizeof(*fp))) {
binder_txn_error("%d:%d translate handle failed\n",
thread->pid, proc->pid);
return_error = BR_FAILED_REPLY;
return_error_param = ret;
return_error_line = __LINE__;
goto err_translate_failed;
}
} break;
......
}
......
t->work.type = BINDER_WORK_TRANSACTION;
if (reply) {
binder_enqueue_thread_work(thread, tcomplete);
binder_inner_proc_lock(target_proc);
if (target_thread->is_dead) {
return_error = BR_DEAD_REPLY;
binder_inner_proc_unlock(target_proc);
goto err_dead_proc_or_thread;
}
BUG_ON(t->buffer->async_transaction != 0);
binder_pop_transaction_ilocked(target_thread, in_reply_to);//再次出栈
// 将数据放到客户端target_thread的todo链表
binder_enqueue_thread_work_ilocked(target_thread, &t->work);
target_proc->outstanding_txns++;
binder_inner_proc_unlock(target_proc);
// 唤醒客户端
wake_up_interruptible_sync(&target_thread->wait);
binder_free_transaction(in_reply_to);
} else if (!(t->flags & TF_ONE_WAY)) {
......
} else {
......
}
if (target_thread)
binder_thread_dec_tmpref(target_thread);
binder_proc_dec_tmpref(target_proc);
if (target_node)
binder_dec_node_tmpref(target_node);
/*
* write barrier to synchronize with initialization
* of log entry
*/
smp_wmb();
WRITE_ONCE(e->debug_id_done, t_debug_id);
return;
......
}
static void
binder_enqueue_thread_work_ilocked(struct binder_thread *thread,
struct binder_work *work)
{
WARN_ON(!list_empty(&thread->waiting_thread_node));
binder_enqueue_work_ilocked(work, &thread->todo);
/* (e)poll-based threads require an explicit wakeup signal when
* queuing their own work; they rely on these events to consume
* messages without I/O block. Without it, threads risk waiting
* indefinitely without handling the work.
*/
if (thread->looper & BINDER_LOOPER_STATE_POLL &&
thread->pid == current->pid && !thread->process_todo)
wake_up_interruptible_sync(&thread->wait);
thread->process_todo = true;
}
static void
binder_enqueue_work_ilocked(struct binder_work *work,
struct list_head *target_list)
{
BUG_ON(target_list == NULL);
BUG_ON(work->entry.next && !list_empty(&work->entry));
list_add_tail(&work->entry, target_list);
}
2.4 客户端被唤醒,获取客户端binder_ref对应的handle
handle = svcmgr_lookup(bs, svcmgr, "hello");
uint32_t svcmgr_lookup(struct binder_state *bs, uint32_t target, const char *name)
{
uint32_t handle;
unsigned iodata[512/4];
struct binder_io msg, reply;
bio_init(&msg, iodata, sizeof(iodata), 4);
bio_put_uint32(&msg, 0); // strict mode header
bio_put_string16_x(&msg, SVC_MGR_NAME);
bio_put_string16_x(&msg, name);
// ioctl到内核处理
if (binder_call(bs, &msg, &reply, target, SVC_MGR_CHECK_SERVICE))
return 0;
// 获取引用服务binder_node的客户端binder_ref的handle
handle = bio_get_ref(&reply);
if (handle)
binder_acquire(bs, handle);
binder_done(bs, &msg, &reply);
return handle;
}
uint32_t bio_get_ref(struct binder_io *bio)
{
struct flat_binder_object *obj;
obj = _bio_get_obj(bio);
if (!obj)
return 0;
if (obj->type == BINDER_TYPE_HANDLE)
return obj->handle;
return 0;
}
3 服务注册和获取过程的简要总结图
二、服务的使用过程内核源码解析
上面我们通过源码分析,获得了客户端想要使用的服务的handle,下面我们接着分析,如何使用该服务。
1. 服务使用过程思路
有了之前Binder源码阅读的经验,我们直接看服务使用的思路,应该很容易能够理解,我们基于这个思路进行分析源码,也更容易理解源码。
2. 客户端使用服务内核源码解析
2.1 向服务端发送数据
int main(int argc, char **argv)
{
int fd;
struct binder_state *bs;
uint32_t svcmgr = BINDER_SERVICE_MANAGER;
uint32_t handle;
int ret;
if (argc < 2){
fprintf(stderr, "Usage:\n");
fprintf(stderr, "%s <hello|goodbye>\n", argv[0]);
fprintf(stderr, "%s <hello|goodbye> <name>\n", argv[0]);
return -1;
}
//打开驱动
bs = binder_open(128*1024);
if (!bs) {
fprintf(stderr, "failed to open binder driver\n");
return -1;
}
g_bs = bs;
//向service_manager发送数据,获得hello服务句柄
handle = svcmgr_lookup(bs, svcmgr, "hello");
if (!handle) {
fprintf(stderr, "failed to get hello service\n");
return -1;
}
g_hello_handle = handle;
fprintf(stderr, "Handle for hello service = %d\n", g_hello_handle);
/* 向服务端发送数据 */
if (!strcmp(argv[1], "hello"))
{
if (argc == 2) {
sayhello();
} else if (argc == 3) {
ret = sayhello_to(argv[2]);
fprintf(stderr, "get ret of sayhello_to = %d\n", ret);
}
}
binder_release(bs, handle);
return 0;
}
1. sayhello_to
以调用服务端的sayhello_to函数为例,分析客户端使用服务的过程
int sayhello_to(char *name)
{
unsigned iodata[512/4];
struct binder_io msg, reply;
int ret;
int exception;
/* 构造binder_io */
bio_init(&msg, iodata, sizeof(iodata), 4);
bio_put_uint32(&msg, 0); // strict mode header
bio_put_string16_x(&msg, "IHelloService");
/* 放入参数 */
bio_put_string16_x(&msg, name);
/* 调用binder_call
msg:客户端的数据
reply:携带服务端返回的数据
g_hello_handle:服务端进程的handle
HELLO_SVR_CMD_SAYHELLO_TO:要调用的服务端提供的服务
*/
if (binder_call(g_bs, &msg, &reply, g_hello_handle, HELLO_SVR_CMD_SAYHELLO_TO))
return 0;
/* 从reply中解析出返回值 */
exception = bio_get_uint32(&reply);
if (exception)
ret = -1;
else
ret = bio_get_uint32(&reply);
binder_done(g_bs, &msg, &reply);
return ret;
}
2. binder_call
binder_call函数,已经分析很多遍了,这里不再详细分析,贴下代码
int binder_call(struct binder_state *bs,
struct binder_io *msg, struct binder_io *reply,
uint32_t target, uint32_t code)
{
int res;
struct binder_write_read bwr;
struct {
uint32_t cmd;
struct binder_transaction_data txn;
} __attribute__((packed)) writebuf;
unsigned readbuf[32];
if (msg->flags & BIO_F_OVERFLOW) {
fprintf(stderr,"binder: txn buffer overflow\n");
goto fail;
}
writebuf.cmd = BC_TRANSACTION;//ioclt类型
writebuf.txn.target.handle = target;//数据发送给哪个进程
writebuf.txn.code = code;//调用进程的哪个函数
writebuf.txn.flags = 0;
writebuf.txn.data_size = msg->data - msg->data0;//数据本身大小
writebuf.txn.offsets_size = ((char*) msg->offs) - ((char*) msg->offs0);//数据头大小,指向binder_node实体(发送端提供服务函数的地址),bio_put_obj(&msg, ptr);
writebuf.txn.data.ptr.buffer = (uintptr_t)msg->data0;//指向数据本身内存起点
writebuf.txn.data.ptr.offsets = (uintptr_t)msg->offs0;//指向数据头内存起点
bwr.write_size = sizeof(writebuf);
bwr.write_consumed = 0;
bwr.write_buffer = (uintptr_t) &writebuf;
hexdump(msg->data0, msg->data - msg->data0);
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);//调用ioctl发送数据给驱动程序
if (res < 0) {
fprintf(stderr,"binder: ioctl failed (%s)\n", strerror(errno));
goto fail;
}
res = binder_parse(bs, reply, (uintptr_t) readbuf, bwr.read_consumed, 0);
if (res == 0) return 0;
if (res < 0) goto fail;
}
fail:
memset(reply, 0, sizeof(*reply));
reply->flags |= BIO_F_IOERROR;
return -1;
}
3. binder_ioctl
用户态的ioctl调用到内核Binder驱动程序binder_ioctl函数,这个函数也分析很多遍了,相信看到这儿的博友,对这些函数已经很熟悉了。
// res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);进入binder驱动程序
static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int ret;
struct binder_proc *proc = filp->private_data;
struct binder_thread *thread;
void __user *ubuf = (void __user *)arg;
/*pr_info("binder_ioctl: %d:%d %x %lx\n",
proc->pid, current->pid, cmd, arg);*/
binder_selftest_alloc(&proc->alloc);
trace_binder_ioctl(cmd, arg);
ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
if (ret)
goto err_unlocked;
//为进程proc创建binder_thread
thread = binder_get_thread(proc);
if (thread == NULL) {
ret = -ENOMEM;
goto err;
}
switch (cmd) {
case BINDER_WRITE_READ:
ret = binder_ioctl_write_read(filp, arg, thread);
if (ret)
goto err;
break;
......
}
......
}
4. binder_ioctl_write_read
static int binder_ioctl_write_read(struct file *filp, unsigned long arg,
struct binder_thread *thread)
{
int ret = 0;
struct binder_proc *proc = filp->private_data;
void __user *ubuf = (void __user *)arg;
struct binder_write_read bwr;
//从用户空间拷贝数据到内核空间(这部分内核空间被mmap映射到了目标进程)
if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d write %lld at %016llx, read %lld at %016llx\n",
proc->pid, thread->pid,
(u64)bwr.write_size, (u64)bwr.write_buffer,
(u64)bwr.read_size, (u64)bwr.read_buffer);
if (bwr.write_size > 0) {
ret = binder_thread_write(proc, thread,
bwr.write_buffer,
bwr.write_size,
&bwr.write_consumed);
trace_binder_write_done(ret);
if (ret < 0) {
bwr.read_consumed = 0;
if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
ret = -EFAULT;
goto out;
}
}
if (bwr.read_size > 0) {
......
}
binder_debug(BINDER_DEBUG_READ_WRITE,
"%d:%d wrote %lld of %lld, read return %lld of %lld\n",
proc->pid, thread->pid,
(u64)bwr.write_consumed, (u64)bwr.write_size,
(u64)bwr.read_consumed, (u64)bwr.read_size);
if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {
ret = -EFAULT;
goto out;
}
out:
return ret;
}
5. binder_thread_write
static int binder_thread_write(struct binder_proc *proc,
struct binder_thread *thread,
binder_uintptr_t binder_buffer, size_t size,
binder_size_t *consumed)
{
uint32_t cmd;
struct binder_context *context = proc->context;
// 获取数据buffer,根据上面总结的发送数据可知,这个buffer由cmd和binder_transcation_data两部分数据组成
void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
// 发送来的数据consumed=0,因此ptr指向用户空间数据buffer的起点
void __user *ptr = buffer + *consumed;
// 指向数据buffer的末尾
void __user *end = buffer + size;
// 逐个读取客户端发送来的数据(cmd+binder_transcation_data)
while (ptr < end && thread->return_error.cmd == BR_OK) {
int ret;
// 获取用户空间中buffer的cmd值
if (get_user(cmd, (uint32_t __user *)ptr))
return -EFAULT;
// 移动指针到cmd的位置之后,指向binder_transcation_data数据的内存起点
ptr += sizeof(uint32_t);
trace_binder_command(cmd);
if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {
atomic_inc(&binder_stats.bc[_IOC_NR(cmd)]);
atomic_inc(&proc->stats.bc[_IOC_NR(cmd)]);
atomic_inc(&thread->stats.bc[_IOC_NR(cmd)]);
}
// 根据上面总结的发送数据可知,cmd是BC_TRANSACTION
switch (cmd) {
......
/*
BC_TRANSACTION:进程发送信息的cmd
BR_TRANSACTION:进程接收BC_TRANSACTION发送信息的cmd
BC_REPLY:进程回复信息的cmd
BR_REPLY:进程接收BC_REPLY回复信息的cmd
*/
case BC_TRANSACTION:
case BC_REPLY: {
struct binder_transaction_data tr;
// 从用户空间拷贝binder_transaction_data到内核空间
if (copy_from_user(&tr, ptr, sizeof(tr)))
return -EFAULT;
// 移动指针到binder_transaction_data的位置之后,指向下一个cmd数据的内存起点
ptr += sizeof(tr);
// 处理binder_transaction_data数据
binder_transaction(proc, thread, &tr,
cmd == BC_REPLY, 0);
break;
}
}
}
......
}
int get_user(int *val, const int __user *ptr) {
if (copy_from_user(val, ptr, sizeof(int))) {
return -EFAULT; // 返回错误码
}
return 0; // 成功
}
6. binder_transaction
这个函数也分析了很多很多遍了,这里简要分析下
static void binder_transaction(struct binder_proc *proc,
struct binder_thread *thread,
struct binder_transaction_data *tr, int reply,
binder_size_t extra_buffers_size)
{
int ret;
struct binder_transaction *t;
struct binder_work *w;
struct binder_work *tcomplete;
binder_size_t buffer_offset = 0;
binder_size_t off_start_offset, off_end_offset;
binder_size_t off_min;
binder_size_t sg_buf_offset, sg_buf_end_offset;
binder_size_t user_offset = 0;
struct binder_proc *target_proc = NULL;
struct binder_thread *target_thread = NULL;
struct binder_node *target_node = NULL;
struct binder_transaction *in_reply_to = NULL;
struct binder_transaction_log_entry *e;
uint32_t return_error = 0;
uint32_t return_error_param = 0;
uint32_t return_error_line = 0;
binder_size_t last_fixup_obj_off = 0;
binder_size_t last_fixup_min_off = 0;
struct binder_context *context = proc->context;
int t_debug_id = atomic_inc_return(&binder_last_id);
ktime_t t_start_time = ktime_get();
char *secctx = NULL;
u32 secctx_sz = 0;
struct list_head sgc_head;
struct list_head pf_head;
// 客户端发送来的数据buffer
const void __user *user_buffer = (const void __user *)
(uintptr_t)tr->data.ptr.buffer;
INIT_LIST_HEAD(&sgc_head);
INIT_LIST_HEAD(&pf_head);
e = binder_transaction_log_add(&binder_transaction_log);
e->debug_id = t_debug_id;
e->call_type = reply ? 2 : !!(tr->flags & TF_ONE_WAY);
e->from_proc = proc->pid;
e->from_thread = thread->pid;
e->target_handle = tr->target.handle;
e->data_size = tr->data_size;
e->offsets_size = tr->offsets_size;
strscpy(e->context_name, proc->context->name, BINDERFS_MAX_NAME);
binder_inner_proc_lock(proc);
binder_set_extended_error(&thread->ee, t_debug_id, BR_OK, 0);
binder_inner_proc_unlock(proc);
if (reply) {//找到要回复的进程
......
} else {
//1. 找到要发送的目的进程
if (tr->target.handle) {// tr->target.handle == 0 代表是service_manager进程,否则是其它进程
struct binder_ref *ref;
/*
* There must already be a strong ref
* on this node. If so, do a strong
* increment on the node to ensure it
* stays alive until the transaction is
* done.
*/
binder_proc_lock(proc);
//根据客户端发送来的handle找到获取binder_ref
ref = binder_get_ref_olocked(proc, tr->target.handle,
true);
if (ref) {
// 根据binder_ref拿到目的进程的binder_node和binder_proc
target_node = binder_get_node_refs_for_txn(
ref->node, &target_proc,
&return_error);
} else {
binder_user_error("%d:%d got transaction to invalid handle, %u\n",
proc->pid, thread->pid, tr->target.handle);
return_error = BR_FAILED_REPLY;
}
binder_proc_unlock(proc);
} else {
//处理service_manager进程
......
}
......
binder_inner_proc_unlock(proc);
}
......
t->work.type = BINDER_WORK_TRANSACTION;
if (reply) {
......
} else if (!(t->flags & TF_ONE_WAY)) {
BUG_ON(t->buffer->async_transaction != 0);
binder_inner_proc_lock(proc);
/*
* Defer the TRANSACTION_COMPLETE, so we don't return to
* userspace immediately; this allows the target process to
* immediately start processing this transaction, reducing
* latency. We will then return the TRANSACTION_COMPLETE when
* the target replies (or there is an error).
*/
binder_enqueue_deferred_thread_work_ilocked(thread, tcomplete);
t->need_reply = 1;
t->from_parent = thread->transaction_stack;
//入栈
thread->transaction_stack = t;
binder_inner_proc_unlock(proc);
//将数据放入目的进程的binder_proc或binder_thread,并唤醒目的进程
return_error = binder_proc_transaction(t,
target_proc, target_thread);
if (return_error) {
binder_inner_proc_lock(proc);
binder_pop_transaction_ilocked(thread, t);
binder_inner_proc_unlock(proc);
goto err_dead_proc_or_thread;
}
} else {
......
}
2.2 服务端被被唤醒,处理客户端发送的数据
服务端的binder_loop函数中有一个死循环,一直在等待数据,现在数据来了,可以开始读取和处理数据了
int main(int argc, char **argv)
{
int fd;
struct binder_state *bs;
uint32_t svcmgr = BINDER_SERVICE_MANAGER;
uint32_t handle;
int ret;
bs = binder_open(128*1024);
if (!bs) {
fprintf(stderr, "failed to open binder driver\n");
return -1;
}
/* add service */
ret = svcmgr_publish(bs, svcmgr, "hello", hello_service_handler);
if (ret) {
fprintf(stderr, "failed to publish hello service\n");
return -1;
}
ret = svcmgr_publish(bs, svcmgr, "goodbye", goodbye_service_handler);
if (ret) {
fprintf(stderr, "failed to publish goodbye service\n");
}
#if 0
while (1)
{
/* read data */
/* parse data, and process */
/* reply */
}
#endif
binder_set_maxthreads(bs, 10);
// 死循环等待读取客户端发送来的数据
binder_loop(bs, test_server_handler);
return 0;
}
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
// 死循环等待读取客户端的数据
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
// 读取客户端发送来的数据(这个内核源码过程和上面service_manager被唤醒后的过程一样,不再赘述)
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
// 解析客户端发送来的数据
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
......
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
// 这里的msg就是客户端发送来的数据,func是服务端的函数test_server_handler
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
......
}
}
return r;
}
int test_server_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
int (*handler)(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply);
handler = (int (*)(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply))txn->target.ptr; // 服务端的函数指针,在向service_manager注册服务的时候写入的,此处是hello_service_handler
return handler(bs, txn, msg, reply);
}
int hello_service_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
/* 根据txn->code知道要调用哪一个函数
* 如果需要参数, 可以从msg取出
* 如果要返回结果, 可以把结果放入reply
*/
/* sayhello
* sayhello_to
*/
uint16_t *s;
char name[512];
size_t len;
uint32_t handle;
uint32_t strict_policy;
int i;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don't propagate it
// further (since we do no outbound RPCs anyway).
strict_policy = bio_get_uint32(msg);
switch(txn->code) {
case HELLO_SVR_CMD_SAYHELLO:
sayhello();
bio_put_uint32(reply, 0); /* no exception */
return 0;
case HELLO_SVR_CMD_SAYHELLO_TO:
/* 从msg里取出字符串 */
s = bio_get_string16(msg, &len); //"IHelloService"
s = bio_get_string16(msg, &len); // name
if (s == NULL) {
return -1;
}
for (i = 0; i < len; i++)
name[i] = s[i];
name[i] = '\0';
/* 调用服务函数处理客户端的数据 */
i = sayhello_to(name);
/* 把结果放入reply */
bio_put_uint32(reply, 0); /* no exception */
bio_put_uint32(reply, i);
break;
default:
fprintf(stderr, "unknown code %d\n", txn->code);
return -1;
}
return 0;
}
2.3 客户端收到服务端处理的数据
从reply中获取服务端处理后的数据
int sayhello_to(char *name)
{
unsigned iodata[512/4];
struct binder_io msg, reply;
int ret;
int exception;
/* 构造binder_io */
bio_init(&msg, iodata, sizeof(iodata), 4);
bio_put_uint32(&msg, 0); // strict mode header
bio_put_string16_x(&msg, "IHelloService");
/* 放入参数 */
bio_put_string16_x(&msg, name);
/* 调用binder_call */
if (binder_call(g_bs, &msg, &reply, g_hello_handle, HELLO_SVR_CMD_SAYHELLO_TO))
return 0;
/* 从reply中解析出返回值 */
exception = bio_get_uint32(&reply);
if (exception)
ret = -1;
else
ret = bio_get_uint32(&reply);
binder_done(g_bs, &msg, &reply);
return ret;
}
三、后记
自此,我们通过三篇文章完成了Binder跨进程通信的源码分析,我们深入内核去分析Binder跨进程通信实现的源码,相信通过这三篇文章,我们已经非常深入地理解了Binder跨进程通信的实现方案。其实内核的源码我们只是分析了大概,更加细节的源码没有深入分析,但我相信有了现在的基础,我们再独立去更深入的分析内核源码,应该会轻松不少,至少不会像无头苍蝇一下,无从下手。
说实话,Android Binder的内核源码分析,我自认为写的不是很好,还有很多改善空间,还有很多没有讲清楚的地方,后面我也会不断加强自己的技术能力,希望未来有一天,我会再重新写一篇更加通俗易懂的Binder驱动内核源码分析。