Bootstrap

Java 线程池详解

线程池ThreadPoolExecutor详解

为什么要用线程池?

  • 控制最大并发数降低资源消耗,提高线程利用率(降低了线程的创建使用完毕后销毁)
  • 线程复用提高响应速度(无须创建线程)
  • 管理线程提高线程的可管理性,线程池能够对线程进行统一分配(调优和监控)

从JDK 5开始,把工作单元与执行机制分离开来,工作单元包括Runnable和Callable,而执行机制由Executor框架提供。

其实java线程池的实现原理很简单,说白了就是一个线程集合workerSet和一个阻塞队workQueue。当用户向线程池提交一个任务(也就是线程)时,线程池会先将任务放入workQueue中。workerSet中的线程会不断的从workQueue中获取线程然后执行。当workQueue中没有任务的时候,worker就会阻塞,直到队列中有任务了就取出来继续执行。
在这里插入图片描述
线程池工作过程

线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面
有任务,线程池也不会马上执行它们当一个任务提交至线程池之后:

a) 如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
b) 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列;
c) 如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要
创建非核心线程立刻运行这个任务;
d) 如果队列满了,而且正在运行的线程数量大于或等于 maximumPoolSize,则交给RejectedExecutionHandler来处理任务。

当一个线程完成任务时,它会从队列中取下一个任务来执行。
当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运
行的线程数大于 corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它
最终会收缩到 corePoolSize 的大小。

在这里插入图片描述

线程池核心参数

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler)
  • corePoolSize:指定了线程池中的线程数量。
  • maximumPoolSize:指定了线程池中的最大线程数量。
  • keepAliveTime:当前线程池数量超过 corePoolSize 时,多余的空闲线程的存活时间,即多
    次时间内会被销毁。
  • unit:keepAliveTime 的单位。
  • workQueue:任务队列,被提交但尚未被执行的任务。
    • ArrayBlockingQueue: 基于数组结构的有界阻塞队列,按FIFO排序任务;
    • LinkedBlockingQuene: 基于链表结构的阻塞队列,按FIFO排序任务,吞吐量通常要高于ArrayBlockingQuene;
    • SynchronousQuene: 一个不存储元素的阻塞队列,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQuene;
    • PriorityBlockingQuene: 具有优先级的无界阻塞队列;
  • threadFactory:线程工厂,用于创建线程,一般用默认的即可。
  • handler:拒绝策略,当任务太多来不及处理,如何拒绝任务
    • AbortPolicy: 直接抛出异常,默认策略;
    • CallerRunsPolicy: 用调用者所在的线程来执行任务;
    • DiscardOldestPolicy: 丢弃阻塞队列中靠最前的任务,并执行当前任务;
    • DiscardPolicy: 直接丢弃任务;

当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。

阻塞队列的作用是什么?为什么是先添加队列,而不是创建最大线程?

  1. 阻塞队列的作用可以保留当前想要继续入队的任务,而且保证了队列中没有任务时会阻塞获取任务的线程,使得线程进入wait状态释放cpu资源(自带了阻塞和唤醒功能,不需要额外的处理)
  2. 在创建新线程的时候,是要获取全局锁,这个时候其他的就要阻塞,影响了整体效率,线程池的初衷就是线程复用降低线程的创建和销毁,添加到队列相对于创建线程代价较小,可以最大的利用核心线程,而且最大线程数是为了应对业务峰值。

线程池中的线程复用的原理?

线程池将线程和任务解耦,去除了通过Thread创建线程时线程和任务绑定的限制,在线程池中同一个线程可以阻塞队列中不停的获取任务来执行,其核心原理是对Thread进行了封装,并不是每次执行都是Thread.start()来创建新线程,而且让每个线程去执行一个循环任务,在这个循环任务中不停的检查是否有任务要执行,如果有直接执行,调用任务的run()方法,将run方法当成普通的方法,通过这种方式只使用固定的线程就可以将所有任务的run方法连起来,达到线程复用的目的。

ThreadPoolExecutor源码详解

//这个属性是用来存放 当前运行的worker数量以及线程池状态的
//int是32位的,这里把int的高3位拿来充当线程池状态的标志位,后29位拿来充当当前运行worker的数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//存放任务的阻塞队列
private final BlockingQueue<Runnable> workQueue;
//worker的集合,用set来存放
private final HashSet<Worker> workers = new HashSet<Worker>();
//历史达到的worker数最大值
private int largestPoolSize;
//当队列满了并且worker的数量达到maxSize的时候,执行具体的拒绝策略
private volatile RejectedExecutionHandler handler;
//超出coreSize的worker的生存时间
private volatile long keepAliveTime;
//常驻worker的数量
private volatile int corePoolSize;
//最大worker的数量,一般当workQueue满了才会用到这个参数
private volatile int maximumPoolSize;
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// Packing and unpacking ctl
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }

其中AtomicInteger变量ctl的功能非常强大: 利用低29位表示线程池中线程数,通过高3位表示线程池的运行状态:

  • RUNNING: -1 << COUNT_BITS,即高3位为111,该状态的线程池会接收新任务,并处理阻塞队列中的任务;
  • SHUTDOWN: 0 << COUNT_BITS,即高3位为000,该状态的线程池不会接收新任务,但会处理阻塞队列中的任务;
  • STOP : 1 <<COUNT_BITS,即高3位为001,该状态的线程不会接收新任务,也不会处理阻塞队列中的任务,而且会中断正在运行的任务;
  • TIDYING : 2 << COUNT_BITS,即高3位为010, 所有的任务都已经终止;
  • TERMINATED: 3 << COUNT_BITS,即高3位为011, terminated()方法已经执行完成
    在这里插入图片描述

任务的执行

execute –> addWorker –>runworker (getTask)

线程池的工作线程通过Woker类实现,在ReentrantLock锁的保证下,把Woker实例插入到HashSet后,并启动Woker中的线程。从Woker类的构造方法实现可以发现: 线程工厂在创建线程thread时,将Woker实例本身this作为参数传入,当执行start方法启动线程thread时,本质是执行了Worker的runWorker方法。firstTask执行完成之后,通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {  
    //workerCountOf获取线程池的当前线程数;小于corePoolSize,执行addWorker创建新线程执行command任务
       if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    // double check: c, recheck
    // 线程池处于RUNNING状态,把提交的任务成功放入阻塞队列中
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // recheck and if necessary 回滚到入队操作前,即倘若线程池shutdown状态,就remove(command)
        //如果线程池没有RUNNING,成功从阻塞队列中删除任务,执行reject方法处理任务
        if (! isRunning(recheck) && remove(command))
            reject(command);
        //线程池处于running状态,但是没有线程,则创建线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    // 往线程池中创建新的线程失败,则reject任务
    else if (!addWorker(command, false))
        reject(command);
}

为什么需要double check线程池的状态?

在多线程环境下,线程池的状态时刻在变化,而ctl.get()是非原子操作,很有可能刚获取了线程池状态后线程池状态就改变了。判断是否将command加入workque是线程池之前的状态。倘若没有double check,万一线程池处于非running状态(在多线程环境下很有可能发生),那么command永远不会执行。

addWorker方法
从方法execute的实现可以看出: addWorker主要负责创建新的线程并执行任务 线程池创建新线程执行任务时,需要获取全局锁:

private final ReentrantLock mainLock = new ReentrantLock();
private boolean addWorker(Runnable firstTask, boolean core) {
    // CAS更新线程池数量
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
                firstTask == null &&
                ! workQueue.isEmpty()))
            return false;

        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            // 线程池重入锁
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start();  // 线程启动,执行任务(Worker.thread(firstTask).start());
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

Worker类的runworker方法

 private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
     Worker(Runnable firstTask) {
         setState(-1); // inhibit interrupts until runWorker
         this.firstTask = firstTask;
         this.thread = getThreadFactory().newThread(this); // 创建线程
     }
     /** Delegates main run loop to outer runWorker  */
     public void run() {
         runWorker(this);
     }
     // ...
 }
  • 继承了AQS类,可以方便的实现工作线程的中止操作;
  • 实现了Runnable接口,可以将自身作为一个任务在工作线程中执行;
  • 当前提交的任务firstTask作为参数传入Worker的构造方法;
//运行的线程,前面addWorker方法中就是直接通过启动这个线程来启动这个worker
final Thread thread;
//当一个worker刚创建的时候,就先尝试执行这个任务
Runnable firstTask;
//记录完成任务的数量
volatile long completedTasks;

Worker(Runnable firstTask) {
    setState(-1); // inhibit interrupts until runWorker
    this.firstTask = firstTask;
    //创建一个Thread,将自己设置给他,后面这个thread启动的时候,也就是执行worker的run方法
    this.thread = getThreadFactory().newThread(this);
}   

runWorker方法是线程池的核心:

  • 线程启动之后,通过unlock方法释放锁,设置AQS的state为0,表示运行可中断;
  • Worker执行firstTask或从workQueue中获取任务:
    • 进行加锁操作,保证thread不被其他线程中断(除非线程池被中断)
    • 检查线程池状态,倘若线程池处于中断状态,当前线程将中断。
    • 执行beforeExecute
    • 执行任务的run方法
    • 执行afterExecute方法
    • 解锁操作

通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;

final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        // 先执行firstTask,再从workerQueue中取task(getTask())

        while (task != null || (task = getTask()) != null) {
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                    (Thread.interrupted() &&
                    runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

getTask方法

从这个方法可以看出线程池是怎么让超过corePoolSize的那部分worker销毁回收的。

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }

        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

注意这里一段代码是keepAliveTime起作用的关键:

boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
  • allowCoreThreadTimeOut为false,线程即使空闲也不会被销毁;倘若为ture,在keepAliveTime内仍空闲则会被销毁。
  • 如果线程允许空闲等待而不被销毁timed == false,workQueue.take任务,如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务,并执行;
  • 如果线程不允许无休止空闲timed == true, workQueue.poll任务, 如果在keepAliveTime时间内,阻塞队列还是没有任务,则返回null;

任务的提交

  • submit任务,等待线程池execute
  • 执行FutureTask类的get方法时,会把主线程封装成WaitNode节点并保存在waiters链表中, 并阻塞等待运行结果;
  • FutureTask任务执行完成后,通过UNSAFE设置waiters相应的waitNode为null,并通过LockSupport类unpark方法唤醒主线程;
public class Test{
    public static void main(String[] args) {

        ExecutorService es = Executors.newCachedThreadPool();
        Future<String> future = es.submit(new Callable<String>() {
            @Override
            public String call() throws Exception {
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                return "future result";
            }
        });
        try {
            String result = future.get();
            System.out.println(result);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

在实际业务场景中,Future和Callable基本是成对出现的,Callable负责产生结果,Future负责获取结果。

  • Callable接口类似于Runnable,只是Runnable没有返回值。
  • Callable任务除了返回正常结果之外,如果发生异常,该异常也会被返回,即Future可以拿到异步执行任务各种结果;
  • Future.get方法会导致主线程阻塞,直到Callable任务执行完成;

submit方法

AbstractExecutorService.submit()实现了ExecutorService.submit()可以获取执行完的返回值, 而ThreadPoolExecutor 是AbstractExecutorService.submit()的子类,所以submit方法也是ThreadPoolExecutor`的方法。

// submit()在ExecutorService中的定义
<T> Future<T> submit(Callable<T> task);

<T> Future<T> submit(Runnable task, T result);

Future<?> submit(Runnable task);
// submit方法在AbstractExecutorService中的实现
public Future<?> submit(Runnable task) {
    if (task == null) throw new NullPointerException();
    // 通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。
    RunnableFuture<Void> ftask = newTaskFor(task, null);
    execute(ftask);
    return ftask;
}

通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。通过Executor.execute方法提交FutureTask到线程池中等待被执行,最终执行的是FutureTask的run方法;

FutureTask对象

public class FutureTask implements RunnableFuture 可以将FutureTask提交至线程池中等待被执行(通过FutureTask的run方法来执行)

public V get() throws InterruptedException, ExecutionException {
    int s = state;
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    return report(s);
} 

内部通过awaitDone方法对主线程进行阻塞,具体实现如下:

private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    final long deadline = timed ? System.nanoTime() + nanos : 0L;
    WaitNode q = null;
    boolean queued = false;
    for (;;) {
        if (Thread.interrupted()) {
            removeWaiter(q);
            throw new InterruptedException();
        }

        int s = state;
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;
            return s;
        }
        else if (s == COMPLETING) // cannot time out yet
            Thread.yield();
        else if (q == null)
            q = new WaitNode();
        else if (!queued)
            queued = UNSAFE.compareAndSwapObject(this, waitersOffset,q.next = waiters, q);
        else if (timed) {
            nanos = deadline - System.nanoTime();
            if (nanos <= 0L) {
                removeWaiter(q);
                return state;
            }
            LockSupport.parkNanos(this, nanos);
        }
        else
            LockSupport.park(this);
    }
}
  • 如果主线程被中断,则抛出中断异常;
  • 判断FutureTask当前的state,如果大于COMPLETING,说明任务已经执行完成,则直接返回;
  • 如果当前state等于COMPLETING,说明任务已经执行完,这时主线程只需通过yield方法让出cpu资源,等待state变成NORMAL;
  • 通过WaitNode类封装当前线程,并通过UNSAFE添加到waiters链表;
  • 最终通过LockSupport的park或parkNanos挂起线程;

run方法

public void run() {
    if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                result = c.call();
                ran = true;
            } catch (Throwable ex) {
                result = null;
                ran = false;
                setException(ex);
            }
            if (ran)
                set(result);
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        int s = state;
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
}

FutureTask.run方法是在线程池中被执行的,而非主线程

  • 通过执行Callable任务的call方法;
  • 如果call执行成功,则通过set方法保存结果;
  • 如果call执行有异常,则通过setException保存异常;

任务的关闭
shutdown方法会将线程池的状态设置为SHUTDOWN,线程池进入这个状态后,就拒绝再接受任务,然后会将剩余的任务全部执行完

 public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        //检查是否可以关闭线程
        checkShutdownAccess();
        //设置线程池状态
        advanceRunState(SHUTDOWN);
        //尝试中断worker
        interruptIdleWorkers();
            //预留方法,留给子类实现
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
}

private void interruptIdleWorkers() {
    interruptIdleWorkers(false);
}

private void interruptIdleWorkers(boolean onlyOne) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        //遍历所有的worker
        for (Worker w : workers) {
            Thread t = w.thread;
            //先尝试调用w.tryLock(),如果获取到锁,就说明worker是空闲的,就可以直接中断它
            //注意的是,worker自己本身实现了AQS同步框架,然后实现的类似锁的功能
            //它实现的锁是不可重入的,所以如果worker在执行任务的时候,会先进行加锁,这里tryLock()就会返回false
            if (!t.isInterrupted() && w.tryLock()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                } finally {
                    w.unlock();
                }
            }
            if (onlyOne)
                break;
        }
    } finally {
        mainLock.unlock();
    }
}

shutdownNow做的比较绝,它先将线程池状态设置为STOP,然后拒绝所有提交的任务。最后中断左右正在运行中的worker,然后清空任务队列。

public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        //检测权限
        advanceRunState(STOP);
        //中断所有的worker
        interruptWorkers();
        //清空任务队列
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}

private void interruptWorkers() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        //遍历所有worker,然后调用中断方法
        for (Worker w : workers)
            w.interruptIfStarted();
    } finally {
        mainLock.unlock();
    }
}

为什么线程池不允许使用Executors去创建? 推荐方式是什么?

线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。

注意Executors各个方法的弊端:

  • newFixedThreadPool和newSingleThreadExecutor:
      主要问题是堆积的请求处理队列可能会耗费非常大的内存,甚至OOM。
  • newCachedThreadPool和newScheduledThreadPool:
      主要问题是线程数最大数是Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至OOM。

推荐方式 1
引入:com.google.guava包

ThreadFactory namedThreadFactory = new ThreadFactoryBuilder().setNameFormat("demo-pool-%d").build();

//Common Thread Pool
ExecutorService pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());

// excute
pool.execute(()-> System.out.println(Thread.currentThread().getName()));

 //gracefully shutdown
pool.shutdown();

推荐方式 2
引入:commons-lang3包

ScheduledExecutorService executorService = new ScheduledThreadPoolExecutor(1,
        new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d").daemon(true).build());

配置线程池需要考虑因素

线程池究竟设置多大要看你的线程池执行的什么任务了,CPU密集型、IO密集型、混合型,任 务类型不同,设置的方式也不一样。从任务的优先级,任务的执行时间长短,任务的性质(CPU密集/ IO密集),任务的依赖关系这四个角度来分析。并且近可能地使用有界的工作队列。

CPU密集型:

  • 尽量使用较小的线程池,一般Cpu核心数+1

IO密集型 :

  • 方法一:可以使用较大的线程池,一般CPU核心数 * 2
  • 方法二:(线程等待时间与线程CPU时间之比 + 1)* CPU数目

混合型:

  • 可以将任务分为CPU密集型和IO密集型,然后分别使用不同的线程池去处理,按情况而定(执行时间差别较小,拆分为两个线程池;否则没有必要拆分)

监控线程池的状态

  • getTaskCount()
  • getCompletedTaskCount()
  • getLargestPoolSize()
  • getPoolSize()
  • getActiveCount()
;